| 研究生: |
李采褣 Lee, Tsai-Jung |
|---|---|
| 論文名稱: |
CCN1 在血管收縮素誘導小鼠主動脈瘤之角色 The role of CCN1 in Angiotensin II-induced aortic aneurysm |
| 指導教授: |
莫凡毅
Mo, Fan-E |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 主動脈瘤 、CCN1 、整合素?6?1 、KLF4 |
| 外文關鍵詞: | aortic aneurysm, CCN1, integrin ?6?1, KLF4 |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
主動脈瘤 (AA)是一種以細胞外基質退化疾病,其特徵為主動脈的內徑擴大到正常的1.5倍。其無症狀的特性使病人不能及早發現而導致血管破裂因而死亡率相當之高,目前也尚無有效的預防或治療方法。CCN1 (Cellular communication network factor 1) 是一種分泌性基質細胞蛋白,透過結合多種整合素來發揮作用,使其在不同類型的細胞中發揮不同的活性。我們實驗室先前的研究表明CCN1會在Angiotensin II (Ang II)誘導的AA小鼠模型的病變區域被大量誘導,但CCN1在AA中扮演的角色尚未被釐清。影響血管構造完整性的關鍵因素之一是血管平滑肌細胞(vascular smooth muscle cells)的狀態。此種細胞可以因應刺激變換為不同的表型,此過程也被稱為VSMC表型轉換 (phenotypic switching),並在AA的發展中起到相當重要的作用。我們假設CCN1會透過與整合素α6β1結合來誘導VSMCs進入降解表型,進而促進AA的發展。為測試這個假說,我們利用Ang II輸注4週來刺激小鼠產生AA,並利用攜帶CCN1-dm (無法與α6β1結合之突變CCN1)的 Apoe-/-Ccn1dm/dm 小鼠來測試阻斷CCN1與α6β1結合是否影響AA的發展。結果顯示Apoe-/-Ccn1dm/dm組的主動脈直徑與其管腔內徑都較不受Ang II刺激而增大,主動脈結構相對完整且巨噬細胞浸潤也較少,顯示CCN1促進AA發展的角色。在大鼠原代VSMCs細胞研究中透過專一性阻斷 CCN1和α6β1之間結合的T1 peptide來探討CCN1在Ang II刺激的VSMC表型轉變中所扮演的角色。西方墨點法中顯示Ang II會誘導VSMCs中CCN1、KLF4、MMP12 和IL-6的表達上升,其中KLF4為已知促VSMC去分化的早期因子。而在經T1阻斷CCN1作用後發現也可有效抑制KLF4及降解表型相關因子,表明CCN1在VSMC表型轉換中有著十分上游且關鍵的作用。我們目前仍持續探索CCN1/α6β1訊息傳遞如何影響KLF4表達,進而引發VSMC表型轉換。總結我們目前的結果表明,CCN1透過與α6β1結合誘導ECM重塑和VSMC表型轉換而導致AA的惡化,也使CCN1成為一個治療AA的嶄新目標。
Aortic aneurysm (AA) is a disease characterized by the degeneration of the extracellular matrix (ECM), leading to dilation of the aorta. Its asymptomatic progression results in high mortality rates, and currently, there is no effective prevention or treatment available. Cellular communication network factor 1 (CCN1) is a secreted matricellular protein that functions through multiple integrin receptors to exert diverse activities in different cell types. Our preliminary results showed that CCN1 was induced in the lesion areas of the Angiotensin II (Ang II)-induced AA mouse model. One of the key factors involved in maintaining vessel integrity is the state of vascular smooth muscle cells (VSMCs), and VSMC phenotypic switching plays a crucial role in AA development. We hypothesized that CCN1 mediates AA progression by inducing VSMCs to adopt a degradative phenotype through integrins α6β1. To assess the role of CCN1, Apoe-/-Ccn1dm/dm mice, carrying the α6β1-binding-deficient mutant CCN1-dm, were used in the Ang II-induced AA mouse model. The aortae were harvested after 4-week Ang II infusion. After treatment, the Apoe-/- Ccn1dm/dm group showed less aortic dilatation and deformation, smaller maximal-diameters, and narrower lumen comparing with Apoe-/-Ccn1+/+ mice. The Apoe-/- Ccn1dm/dm mice maintained better aortic wall integrity and exhibited less macrophage infiltration. In vitro studies, the antagonistic T1 peptide was used to specifically block the binding between CCN1 and α6β1 to study the regulation of VSMC phenotypic changes by CCN1 upon Ang II treatments in the rat primary aortic VSMCs. Western blotting showed that Ang II induced the expression of CCN1, KLF4, MMP12 and IL-6 in VSMCs. KLF4 is known to initiate VSMC dedifferentiation. Blocking CCN1 with T1 inhibited KLF4 induction and degradative phenotype-associated factors, suggesting a critical role of CCN1 in VSMC phenotype switching. How CCN1/α6β1 signaling regulates KLF4 expression and VSMC phenotypic switching remains to be determined. Our results show that CCN1 induces ECM remodeling and VSMC phenotypic switching through binding to α6β1, resulting in AA progression. This finding may establish CCN1 as a novel therapeutic target for AA.
1. Hibino M, Otaki Y, Kobeissi E, et al. Blood Pressure, Hypertension, and the Risk of Aortic Dissection Incidence and Mortality: Results From the J-SCH Study, the UK Biobank Study, and a Meta-Analysis of Cohort Studies. Circulation. Mar 2022;145(9):633-644. doi:10.1161/CIRCULATIONAHA.121.056546
2. Kubota Y, Folsom AR, Ballantyne CM, Tang W. Lipoprotein(a) and abdominal aortic aneurysm risk: The Atherosclerosis Risk in Communities study. Atherosclerosis. Jan 2018;268:63-67. doi:10.1016/j.atherosclerosis.2017.10.017
3. Qian G, Adeyanju O, Olajuyin A, Guo X. Abdominal Aortic Aneurysm Formation with a Focus on Vascular Smooth Muscle Cells. Life (Basel). Jan 27 2022;12(2)doi:10.3390/life12020191
4. Robinson WP, Schanzer A, Li Y, et al. Derivation and validation of a practical risk score for prediction of mortality after open repair of ruptured abdominal aortic aneurysms in a US regional cohort and comparison to existing scoring systems. J Vasc Surg. Feb 2013;57(2):354-61. doi:10.1016/j.jvs.2012.08.120
5. Giannopoulos S, Kokkinidis DG, Armstrong EJ. Long-Term Outcomes of Endovascular vs Open Surgical Repair for Abdominal Aortic Aneurysms: A Meta-Analysis of Randomized Trials. Cardiovasc Revasc Med. Oct 2020;21(10):1253-1259. doi:10.1016/j.carrev.2020.02.015
6. Krafcik BM, Stone DH, Cai M, et al. Changes in global mortality from aortic aneurysm. J Vasc Surg. Jul 2024;80(1):81-88 e1. doi:10.1016/j.jvs.2024.02.025
7. Bobryshev YV, Lord RS. Vascular-associated lymphoid tissue (VALT) involvement in aortic aneurysm. Atherosclerosis. Jan 2001;154(1):15-21. doi:10.1016/s0021-9150(00)00441-x
8. Yuan Z, Lu Y, Wei J, Wu J, Yang J, Cai Z. Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Front Immunol. 2020;11:609161. doi:10.3389/fimmu.2020.609161
9. Kurihara T, Shimizu-Hirota R, Shimoda M, et al. Neutrophil-derived matrix metalloproteinase 9 triggers acute aortic dissection. Circulation. Dec 18 2012;126(25):3070-80. doi:10.1161/CIRCULATIONAHA.112.097097
10. Longo GM, Xiong W, Greiner TC, Zhao Y, Fiotti N, Baxter BT. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J Clin Invest. Sep 2002;110(5):625-32. doi:10.1172/JCI15334
11. Thompson RW, Holmes DR, Mertens RA, et al. Production and localization of 92-kilodalton gelatinase in abdominal aortic aneurysms. An elastolytic metalloproteinase expressed by aneurysm-infiltrating macrophages. J Clin Invest. Jul 1995;96(1):318-26. doi:10.1172/JCI118037
12. van Varik BJ, Rennenberg RJ, Reutelingsperger CP, Kroon AA, de Leeuw PW, Schurgers LJ. Mechanisms of arterial remodeling: lessons from genetic diseases. Front Genet. 2012;3:290. doi:10.3389/fgene.2012.00290
13. Jeong HD, Kim JH, Kwon GE, Lee ST. Expression of Polyamine Oxidase in Fibroblasts Induces MMP-1 and Decreases the Integrity of Extracellular Matrix. Int J Mol Sci. Sep 10 2022;23(18)doi:10.3390/ijms231810487
14. Norman JT, Clark IM, Garcia PL. Regulation of TIMP-1 expression by hypoxia in kidney fibroblasts. Ann N Y Acad Sci. Jun 30 1999;878:503-5. doi:10.1111/j.1749-6632.1999.tb07709.x
15. Nelson KK, Ranganathan AC, Mansouri J, et al. Elevated sod2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clin Cancer Res. Jan 2003;9(1):424-32.
16. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. Oct 2002;2(10):725-34. doi:10.1038/nri910
17. van der Flier A, Sonnenberg A. Function and interactions of integrins. Cell Tissue Res. Sep 2001;305(3):285-98. doi:10.1007/s004410100417
18. Zhou M, Wang X, Shi Y, et al. Deficiency of ITGAM Attenuates Experimental Abdominal Aortic Aneurysm in Mice. J Am Heart Assoc. Apr 6 2021;10(7):e019900. doi:10.1161/JAHA.120.019900
19. Guo Y, Wei R, He Y, Zhang H, Deng J, Guo W. The synergistic mechanism of fibroblast growth factor 18 and integrin beta1 in rat abdominal aortic aneurysm repair. BMC Cardiovasc Disord. Sep 17 2022;22(1):415. doi:10.1186/s12872-022-02851-y
20. Zhang Y, Wu W, Yang X, et al. HINT1 aggravates aortic aneurysm by targeting ITGA6/FAK axis in vascular smooth muscle cells. J Clin Invest. Jun 2 2025;135(11)doi:10.1172/JCI186628
21. Holbourn KP, Acharya KR, Perbal B. The CCN family of proteins: structure-function relationships. Trends Biochem Sci. Oct 2008;33(10):461-73. doi:10.1016/j.tibs.2008.07.006
22. Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci. Oct 2011;68(19):3149-63. doi:10.1007/s00018-011-0778-3
23. Leu SJ, Lam SC, Lau LF. Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem. Nov 29 2002;277(48):46248-55. doi:10.1074/jbc.M209288200
24. Espinoza I, Yang L, Steen TV, et al. Binding of the angiogenic/senescence inducer CCN1/CYR61 to integrin alpha(6)beta(1) drives endocrine resistance in breast cancer cells. Aging (Albany NY). Feb 11 2022;14(3):1200-1213. doi:10.18632/aging.203882
25. Hsu PL, Chen JS, Wang CY, Wu HL, Mo FE. Shear-Induced CCN1 Promotes Atheroprone Endothelial Phenotypes and Atherosclerosis. Circulation. Jun 18 2019;139(25):2877-2891. doi:10.1161/CIRCULATIONAHA.118.033895
26. Zhang J, Wu G, Dai H. The matricellular protein CCN1 regulates TNF-alpha induced vascular endothelial cell apoptosis. Cell Biol Int. Jan 2016;40(1):1-6. doi:10.1002/cbin.10469
27. Bai T, Chen CC, Lau LF. Matricellular protein CCN1 activates a proinflammatory genetic program in murine macrophages. J Immunol. Mar 15 2010;184(6):3223-32. doi:10.4049/jimmunol.0902792
28. Matsumae H, Yoshida Y, Ono K, et al. CCN1 knockdown suppresses neointimal hyperplasia in a rat artery balloon injury model. Arterioscler Thromb Vasc Biol. Jun 2008;28(6):1077-83. doi:10.1161/ATVBAHA.108.162362
29. Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nat Cell Biol. Feb 2019;21(2):122-132. doi:10.1038/s41556-018-0223-z
30. Schaff M, Tang C, Maurer E, et al. Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation. Jul 30 2013;128(5):541-52. doi:10.1161/CIRCULATIONAHA.112.000799
31. Lee TH, Seng S, Li H, Kennel SJ, Avraham HK, Avraham S. Integrin regulation by vascular endothelial growth factor in human brain microvascular endothelial cells: role of alpha6beta1 integrin in angiogenesis. J Biol Chem. Dec 29 2006;281(52):40450-60. doi:10.1074/jbc.M607525200
32. Turlo KA, Scapa J, Bagher P, et al. beta1-integrin is essential for vasoregulation and smooth muscle survival in vivo. Arterioscler Thromb Vasc Biol. Oct 2013;33(10):2325-35. doi:10.1161/ATVBAHA.112.300648
33. Leu SJ, Liu Y, Chen N, Chen CC, Lam SC, Lau LF. Identification of a novel integrin alpha 6 beta 1 binding site in the angiogenic inducer CCN1 (CYR61). J Biol Chem. Sep 5 2003;278(36):33801-8. doi:10.1074/jbc.M305862200
34. Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal. Nov 21 2022;20(1):180. doi:10.1186/s12964-022-00993-2
35. Li G, Wang M, Caulk AW, et al. Chronic mTOR activation induces a degradative smooth muscle cell phenotype. J Clin Invest. Mar 2 2020;130(3):1233-1251. doi:10.1172/JCI131048
36. Zhao G, Lu H, Chang Z, et al. Single-cell RNA sequencing reveals the cellular heterogeneity of aneurysmal infrarenal abdominal aorta. Cardiovasc Res. Apr 23 2021;117(5):1402-1416. doi:10.1093/cvr/cvaa214
37. Ghaleb AM, Yang VW. Kruppel-like factor 4 (KLF4): What we currently know. Gene. May 5 2017;611:27-37. doi:10.1016/j.gene.2017.02.025
38. Yoshida T, Kaestner KH, Owens GK. Conditional deletion of Kruppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res. Jun 20 2008;102(12):1548-57. doi:10.1161/CIRCRESAHA.108.176974
39. Wang C, Han M, Zhao XM, Wen JK. Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem. Sep 2008;144(3):313-21. doi:10.1093/jb/mvn068
40. Li HX, Han M, Bernier M, et al. Kruppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells. J Biol Chem. Jun 4 2010;285(23):17846-56. doi:10.1074/jbc.M109.076992
41. Shankman LS, Gomez D, Cherepanova OA, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. Jun 2015;21(6):628-37. doi:10.1038/nm.3866
42. Salmon M, Johnston WF, Woo A, et al. KLF4 regulates abdominal aortic aneurysm morphology and deletion attenuates aneurysm formation. Circulation. Sep 10 2013;128(11 Suppl 1):S163-74. doi:10.1161/CIRCULATIONAHA.112.000238
43. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. May 2 2003;92(8):827-39. doi:10.1161/01.RES.0000070112.80711.3D
44. Davis V, Persidskaia R, Baca-Regen L, et al. Matrix metalloproteinase-2 production and its binding to the matrix are increased in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. Oct 1998;18(10):1625-33. doi:10.1161/01.atv.18.10.1625
45. Pyo R, Lee JK, Shipley JM, et al. Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. Jun 2000;105(11):1641-9. doi:10.1172/JCI8931
46. Wang Y, Ait-Oufella H, Herbin O, et al. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest. Feb 2010;120(2):422-32. doi:10.1172/JCI38136
47. Allaire E, Forough R, Clowes M, Starcher B, Clowes AW. Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model. J Clin Invest. Oct 1 1998;102(7):1413-20. doi:10.1172/JCI2909
48. Zhao X, Li H, Dong J, Kokudo N, Tang W. Overexpression of TIMP-2 mediated by recombinant adenovirus in rat abdominal aorta inhibits extracellular matrix degradation. Biosci Trends. Oct 2008;2(5):206-10.
49. Sawada H, Lu HS, Cassis LA, Daugherty A. Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arterioscler Thromb Vasc Biol. Mar 2022;42(3):277-288. doi:10.1161/ATVBAHA.121.317058
50. Daugherty A, Cassis L. Chronic angiotensin II infusion promotes atherogenesis in low density lipoprotein receptor -/- mice. Ann N Y Acad Sci. Nov 18 1999;892:108-18. doi:10.1111/j.1749-6632.1999.tb07789.x
51. Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest. Jun 2000;105(11):1605-12. doi:10.1172/JCI7818
52. Liu J, Lu H, Howatt DA, et al. Associations of ApoAI and ApoB-containing lipoproteins with AngII-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol. Aug 2015;35(8):1826-34. doi:10.1161/ATVBAHA.115.305482
53. Forouzanfar MM, Barazesh F, Hashemi B, Safari S. Characteristics and Outcome of Abdominal Aortic Aneurysm in Emregncy Department; a 10-year Cross-sectional Study. Arch Acad Emerg Med. 2020;8(1):e4.
54. Kuivaniemi H, Elmore JR. Opportunities in abdominal aortic aneurysm research: epidemiology, genetics, and pathophysiology. Ann Vasc Surg. Aug 2012;26(6):862-70. doi:10.1016/j.avsg.2012.02.005
55. Davis FM, Rateri DL, Balakrishnan A, et al. Smooth muscle cell deletion of low-density lipoprotein receptor-related protein 1 augments angiotensin II-induced superior mesenteric arterial and ascending aortic aneurysms. Arterioscler Thromb Vasc Biol. Jan 2015;35(1):155-62. doi:10.1161/ATVBAHA.114.304683
56. Rateri DL, Davis FM, Balakrishnan A, et al. Angiotensin II induces region-specific medial disruption during evolution of ascending aortic aneurysms. Am J Pathol. Sep 2014;184(9):2586-95. doi:10.1016/j.ajpath.2014.05.014
57. Al-Merani SA, Brooks DP, Chapman BJ, Munday KA. The half-lives of angiotensin II, angiotensin II-amide, angiotensin III, Sar1-Ala8-angiotensin II and renin in the circulatory system of the rat. J Physiol. May 1978;278:471-90. doi:10.1113/jphysiol.1978.sp012318
58. Guo RW, Yang LX, Wang H, Liu B, Wang L. Angiotensin II induces matrix metalloproteinase-9 expression via a nuclear factor-kappaB-dependent pathway in vascular smooth muscle cells. Regul Pept. Apr 10 2008;147(1-3):37-44. doi:10.1016/j.regpep.2007.12.005
59. Wang C, Qian X, Sun X, Chang Q. Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2. Exp Biol Med (Maywood). Dec 2015;240(12):1564-71. doi:10.1177/1535370215576312
60. Hamik A, Lin Z, Kumar A, et al. Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem. May 4 2007;282(18):13769-79. doi:10.1074/jbc.M700078200
61. Ma B, Zhang L, Zou Y, et al. Reciprocal regulation of integrin beta4 and KLF4 promotes gliomagenesis through maintaining cancer stem cell traits. J Exp Clin Cancer Res. Jan 18 2019;38(1):23. doi:10.1186/s13046-019-1034-1
62. Shin J, Tkachenko S, Gomez D, Tripathi R, Owens GK, Cherepanova OA. Smooth muscle cells-specific loss of OCT4 accelerates neointima formation after acute vascular injury. Front Cardiovasc Med. 2023;10:1276945. doi:10.3389/fcvm.2023.1276945
63. Cherepanova OA, Gomez D, Shankman LS, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. Jun 2016;22(6):657-65. doi:10.1038/nm.4109
64. Alencar GF, Owsiany KM, Karnewar S, et al. Stem Cell Pluripotency Genes Klf4 and Oct4 Regulate Complex SMC Phenotypic Changes Critical in Late-Stage Atherosclerotic Lesion Pathogenesis. Circulation. Nov 24 2020;142(21):2045-2059. doi:10.1161/CIRCULATIONAHA.120.046672
65. Yap C, Mieremet A, de Vries CJM, Micha D, de Waard V. Six Shades of Vascular Smooth Muscle Cells Illuminated by KLF4 (Kruppel-Like Factor 4). Arterioscler Thromb Vasc Biol. Nov 2021;41(11):2693-2707. doi:10.1161/ATVBAHA.121.316600
66. Holbourn KP, Perbal B, Ravi Acharya K. Proteins on the catwalk: modelling the structural domains of the CCN family of proteins. J Cell Commun Signal. Mar 2009;3(1):25-41. doi:10.1007/s12079-009-0048-4
67. Hall-Glenn F, Lyons KM. Roles for CCN2 in normal physiological processes. Cell Mol Life Sci. Oct 2011;68(19):3209-17. doi:10.1007/s00018-011-0782-7
68. Wang Y, Liu X, Xu Q, et al. CCN2 deficiency in smooth muscle cells triggers cell reprogramming and aggravates aneurysm development. JCI Insight. Jan 10 2023;8(1)doi:10.1172/jci.insight.162987
69. Rodrigues-Diez RR, Tejera-Munoz A, Esteban V, et al. CCN2 (Cellular Communication Network Factor 2) Deletion Alters Vascular Integrity and Function Predisposing to Aneurysm Formation. Hypertension. Mar 2022;79(3):e42-e55. doi:10.1161/HYPERTENSIONAHA.121.18201
70. Sharma N, Hans CP. Interleukin 12p40 Deficiency Promotes Abdominal Aortic Aneurysm by Activating CCN2/MMP2 Pathways. J Am Heart Assoc. Feb 2 2021;10(3):e017633. doi:10.1161/JAHA.120.017633