| 研究生: |
田國璋 Tian, Gou-Joung |
|---|---|
| 論文名稱: |
少層石墨於形變下的電子結構與光學特性 Electronic and Optical Properties of Deformed AA-stacked Graphenes |
| 指導教授: |
林明發
Lin, Min-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 半金屬 、吸收光譜 、AA堆疊少層石墨 、電子結構 、形變效應 |
| 外文關鍵詞: | absorption spectra, semimetal, AA-stacked few-layer graphenes, electronic properties, deformation effect |
| 相關次數: | 點閱:67 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文以緊束模型研究AA堆疊的少層石墨(FLG)(1~4 layers)於形變下的π電子能帶及光學性質。外加應力強度和層數不同扮演重要的角色。依據Harrison’s rule下的彈性理論來決定形變下石墨系統碳-碳原子同層以及層和層間的交互作用。在任意應力形變下,單層石墨依舊為零能隙半導體特性而且多層系統保持為半金屬。但是另一方面形變強烈改變能帶的主要特徵,在費米能附(-1.5eV~1.5eV)之費米動量產生位移且線性斜率改變,中等能量範圍(-4eV~4eV)能帶的雙重簡併明顯被破壞而且能帶寬有明顯變化。態密度表現出肩狀和強峰結構,形變使中能附近的強峰數目增加兩倍且有明顯的頻率差。吸收光譜因此展現出二群中能量的吸收峰,每群強峰的數目和石墨層數一樣。利用光學量度可用來驗證形變下的電子特性。
In this thesis, the electronic and optical properties of the deformed AA-stacked few-layer graphenes are investigated by the tight-binding model. The uniaxial stress and the number of layers play important roles in this study. The intralayer and interlayer hopping integrals are determined by the elasticity theory with the Harrison’s rule. Under the arbitrary deformation, a monolayer graphene remains a zero-gap semiconductor, and the multilayer graphenes are still semimetals. On the other hand, the deformation strongly effects the main characteristics of the energy bands. It leads to the large shifts in the Fermi momenta, the obvious destruction of the double degeneracy at moderate energy, and the drastic change of bandwidth. The density of states presents the shoulder structures and peak structures. The deformation doubles the number of the moderate-energy peaks and induces the obvious frequency differences in those peaks. Therefore, the absorption spectra exhibit two groups of peaks and the peak number of each group is the same as the layer number. The predicted electronic properties could be verified by the optical measurements.
1 Rocha CG, Pacheco M, Barticevic Z, Latge A. Phys. Rev. B 70,
233402(2004)
2 F. L. Shyu, Phys. Rev. B 72, 045424(2005)
3 S. Iijima, “Helical microtubules od graphitic carbon”. Nature 354.
56-58, (1991)
4 R. Satio, G. Dresselhaus, and M. S. Dresselhaus, “Physical properties of carbon nanotubes”, Imperical College Press, London (1998)
5 B. T. Kelly. Physics of graphite. Applied Science: London, Englewood, N. J. ,(1981)
6 J. M. D Coey, M. Venkatesan, C. B. Fitzgerald, A. P. Douvalis, and I. S. Sanders, “Ferromagnetism of a graphite nodule from the Canyon Diablo meterorite”. Nature 420, 156-159 (2002)
7 A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, “Direct evidene for atomic defers in grapheme layers”. Nature 430, 870-873 (2004)
8 E. T. Jensen, R. E. Palmer, W. Allison, and J. F. Annett,”Temperature-dependent plasmon frequency and linewidth in a semimetal”. Pjys. Rev. Lett. 66, 492-495 (1991)
9 P. Laitenberger and R. E. Palmer, “Plasmon dispersion and damping at the surface of a semimetal”, Phys. Rev. Lett. 76, 1952-1955 (1996)
10 H. Venghaus, Phys. Status Solidi B 81, 221 (1977)
11 T. Pichler, M. Knupfer, M. S. Golden, J. Fink, A Rinzler, and R. E. Smalley, “Localixed and delocalized electronic states in single-wall carbon nanotubes”, Phys. Rev. Lett. 80, 4729-4732 (1998)
12 P. R. Wallace, “The band theory of graphite”, Phys. Rev. 71, 622-634 (1947)
13 J. W. McClure, “Diamagnetism of graphite”, Phys. Rev. 104, 666-671 (1956)
14 J. C. Charlier, X. Gonze, nad J. P. Michenaud, “First-principles study of the electronic properties of graphite”, Phys. Rev. B 43,4579-4589 (1991)
15 J. C. Charlier, J. P. Michenaud, “Tight-binding model for the electronic properties of simple hexagonal graphite”. Phys. Rev. B 44, 13237-13249(1991)
16 J. C. Charlier, J. P. Michenaud and X. Gonze, “Tight-binding model for the electronic properties of simple hexagonal graphite”. Phys. Rev. B 46, 4531-4539 (1992)
17 J. C. Charlier, J. P. Michenaud and Ph. Lambin, “Tight-binding density of electronic states of pregraphitic carbon”, Phys. Rev. B 46, 4540-4543(1992)
18 K. S. Novoselov, A. K. Geim, S. V. Morozov, Djiang, Y. Zhang, S. V. Dubonos, I. V. Grigoriva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306, 666-669 (2004)
19 J. S. Bunch, Y. Yaish, M. Brink, Bolotin and P. L. McEuen, “Coulumb oscillations and Hall effect in quasi-2D graphite quatum dots”, Nano lett. 5, 287-290 (2005)
20 C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang and M. F. Lin,”Magnetoelectronic properties of a graphite sheet”, Carbon 42, 2975-2980 (2004)
21 F. Guinea, A H. Castro Neto and N. M. R. Peres, “Electronic states and laudau levels in grapheme stacks”, Phys. Rev. B 73, 245426 (2006)
22 F. L. Shyu and M. F. Lin, “Plasmons and optical properties of semimetal graphite”, J. Phys. Soc. Jpn. 69, 3781-3784 (2000)
23 J. H. Ho, C. P. Chamg and M. F. Lin, “Electronic excitations of the multilayered graphite”, Phys. Lett. A352, 446-450 (2006)
24 M. L. Sadowski, G. Martinez, M. Potemski, C. Berger and W. A. deHeer, “Laudau Level spectroscopy of ultrathin graphite layers”, Phys. Rev. Lett 97, 266405 (2006)
25 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Nonoselov, S. Roth and A. K. Geim, “Raman spectrum of grapheme and grapheme layers”, Phys. Rev. Lett 97, 187401 (2006)
26 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D Jiang, F. Schedin and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer grapheme”, Nature Physics 2, 177-180 (2006)
27 Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim, “Experimental observation of the quatum Hall effect and Berry’s phase in grapheme”, Nature Physics 2, 177-180 (2006)
28 R. Heyd, A. Charlier, E. Mcrace, “Uniaxial-stress effects on the electronic properties of carbon nanotubes:. Phys. Rev. B 55, 6820-6823 (1997)
29 C. P. Chang, Y. H Chen, F. L. Shyu, R. B. Chen, and M. F. Lin, “Uniaxial-stress effect on electronic structure of nanographite ribbon”, Physica E 18, 509-522 (2003)
30 C. P. Chang, B. R. Wu, R. B. Chen, and M. F. Lin, “Deformation effect on electronic and optical properties of nanographite ribbons”, J. Appl. Phys. 101, 063506 (2007)
31 L. Yang, M. P. Anantram, J. Han, J. P. Lu, “Band-gap change of carbon nanotubes: Effect of smaill uniaxial and torsional strain”. Phys. Rev. B 60, 13874-13878 (1999)
32 L. Yang and J. Han, “Electronic structure of deformed carbon nanotubes”. Phys. Rev. Lett. 85, 154-157 (2000)
33 W. A. Harrison, “Electronic Structure and the Properties of solids”, Dover, New York (1989)
34 B. T. Kelly, “Physics of Graphite”, Applied Science, Landon (1981)