簡易檢索 / 詳目顯示

研究生: 王偉修
Wang, Wei-Hsiu
論文名稱: MF薄膜阻塞現象之探討
指導教授: 葉宣顯
Yeh, Hsuan-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 100
中文關鍵詞: 微過濾阻塞藻酸
外文關鍵詞: microfiltration, alginic acid, fouling
相關次數: 點閱:53下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在高級淨水處理單元中,薄膜程序一直是被廣泛應用的技術之一。薄膜程序在淨水處理上可用來去除懸浮微粒、有機物、無機鹽及微生物,同時可以有效控制消毒副產物及其前驅物質,並可取代傳統淨水程序之混凝、沉澱,提升飲用水的適飲性。此外,在土地狹小、人口眾多的台灣,薄膜程序之應用亦具有節省佔地面積、擴建容易及操控簡單等優點。
    然而,薄膜在淨水處理上,最大的瓶頸在於阻塞(fouling)。阻塞使得薄膜系統必須增加化學清洗之頻率,不僅減少產水量,同時會縮短薄膜之壽命、增加成本。因此,此項技術往往存在成本高、耗能多及回收率較傳統程序低等缺點。再者南部水廠原水水質長期存在優氧化及高硬度的特性,故本研究以藻酸為藻類胞外代謝物(extracellular organic matter, EOM)的代表,加上鈣離子及膠體顆粒,探討三者彼此的作用對於微過濾(microfiltration, MF) 薄膜阻塞機制影響。
    實驗採用Polyvinylidenefluoride(PVDF)材質、孔徑大小為0.1μm的MF薄膜。先以藻酸、腐植酸、水楊酸及粒徑為0.8μm、0.1μm 及0.05μm的Latex particles分別進行薄膜過濾,探討單一物種對薄膜阻塞的影響。其次分別以(1)藻酸混合鈣離子、(2)藻酸混合不同粒徑的顆粒及(3)鈣離子混合不同粒徑的顆粒,來進行薄膜過濾試驗,觀察混合兩種物種對薄膜阻塞的影響。最後將藻酸、鈣離子及不同粒徑的顆粒三者混合,探討三者同時存在對於薄膜阻塞的影響。
    研究顯示,藻酸在低pH值的情形下,對於MF薄膜的阻塞有很大的影響。當水體中含有大量的鈣離子時,鈣離子會和藻酸進行錯合的作用,同時也會成為藻酸和薄膜之間的架橋,進而使得阻塞的情形更為嚴重。
    就顆粒大小而言,粒徑為0.1μm的顆粒最容易造成薄膜阻塞。但是,當有鈣離子存在時,鈣離子能使0.1μm的顆粒聚合成更大的顆粒,反而能有效的增加清水流通量,降低阻塞的生成。相反的,由顆粒分佈實驗得知藻酸具有膠凝作用(flocculation),也能使小顆粒凝聚成大顆粒,但是過量未解離的藻酸分子卻會阻塞薄膜的孔隙,加速阻塞的生成。
    當藻酸、鈣離子及顆粒同時存在時,鈣離子會扮演重要的架橋角色;促進顆粒吸附藻酸,同時也增加顆粒在薄膜表面的沉積,造成薄膜嚴重的阻塞。
    總之,EOM對於MF薄膜的阻塞有很大的影響,尤其是在水體中還同時存在鈣離子及其他顆粒性物質時。也因此,建議在進行薄膜程序的前處理時,需同時將三者的濃度減到某一程度以下,再進入薄膜程序,以降低薄膜在操作上可能碰到的相關問題。

    In advanced water treatment, membrane filtration has been used widely throughout the world. It can be used to remove suspended solids, organics, inorganic salts and microorganism, and to control disinfections-by products (DBPs) effectively. As a matter of fact, coagulation and sedimentation in conventional process can be replaced with membrane process to improve the potability of drinking water. Besides, the membrane process has many advantages, such as small footprint, easy expansion and uncomplicated control, etc.
    However, the major problem encounters in membrane process for water treatment is fouling. Fouling will increase the chemical cleaning frequency, therefore, not only decrease productivity, but also shorten membrane lifespan and increase cost.
    In this research, the fouling phenomena of microfiltration(MF) membrane were studied. The interactions among colloidal particles, calcium ion, and dissolved organics, such as salicylic acid, humic acid and, alginic acid on MF fouling were focused. This was to simulate the scenario of source water from an eutrophic surface reservoir in south Taiwan, with the co-existance of hardness and algae bloom. The alginic acid is to represent the extracellular organic matter(EOM)from algal. The salicylic acid and humic acid are to simulate low and high MW natural organic matter(NOM), respectively.
    The colloidal particles employed were latex particles, with diameter of 0.05, 0.1 and 0.8 μm. The MF membrane used was made from polyvinylidenefluoride(PVDF), with average diameter of 0.1 μm. First, the effect of single substance on fouling was studied. Next, feed water with dual substances, namely alginic acid with Ca, alginic acid with colloidal particles, and colloidal particles with Ca were explored. And, finally, it was the feed water with the simultaneous existance of the three catagories of substances.
    The results show that alginic acid fouled the membrane, mainly at low pH. When Ca was added into the alginic acid solution, fouling was aggravated, probably due to the complexation between Ca and alginic acid, and also the the bridging between alginic acid and MF membrane.
    For sole colloidal particle system, latex particle with diameter closed to the pore size(0.1 μm)of MF membrane showed severe fouling. However, adding Ca could alleviate fouling caused by 0.1 μm diameter latex particle. This was dut to the aggregation of 0.1 μm particle by Ca. Alginic acid also have coagulation function on colloidal particles; however, when the amount of alginic acid is in excess compare to that of colloidal particles, the free alginic acid may foul the membrane severely.
    If the feed water contained alginic acid, Ca, and colloidal particle simultaneously, the fouling was most severe. In this situation, calcium played an import role, as it would promote the adsorption of alginic acid on colloidal particles, and also the deposition of particles on membrane surface.
    In conclusion, EOM have a significant effect on MF membrane fouling, especially when Ca and colloidal particles also exit at the same time. For preventing fouling, EOM, Ca, and colloidal particles should be removed to certain extecd before the water is fed into the membrane.

    目錄 摘要 I Abstract III 誌謝 VII 圖目錄 XV 表目錄 XVIII 第一章 前言 1 1-1研究緣起 1 1-2研究目的及內容 2 第二章 文獻回顧 3 2-1薄膜種類 3 2-2薄膜的材質 7 2-3薄膜模組 9 2-4掃流過濾及垂直過濾 12 2-5薄膜與傳統淨水處理程序的比較 14 2-6薄膜所遭遇到之問題 16 2-6-1薄膜積垢和濃度極化 16 2-6-2薄膜及進流水性質的改變 19 2-7藻類對公共給水之影響 19 2-7-1優氧化的影響 19 2-7-2藻類胞外物的影響 23 2-7-2-1臭味 24 2-7-2-2 EOM對於水處理的影響 25 2-8淨水程序對藻類之去除 26 第三章 實驗設備與方法 31 3-1實驗設備及方法 31 3-1-1薄膜模組 31 3-1-2操作方式 33 3-1-3實驗裝備及藥品 34 3-2實驗流程 36 3-2-1動力吸附實驗 36 3-2-2 MF薄膜過濾實驗流程 38 3-3各項水質分析方法 46 3-3-1 pH值 46 3-3-2 Vis595吸光值 46 3-3-3濁度 46 3-3-4非揮發性溶解性有機碳 47 3-3-5界達電位 48 3-3-6鈣離子電極 49 3-3-7 雷射粒徑分佈儀 49 3-4各項測定參數 50 3-4-1流通量(Flux) 51 3-4-2流通量比例( Flux Ratio) 51 3-4-3去除率( Rejection) 51 第四章 結果與討論 53 4-1薄膜粉體動力吸附實驗 53 4-1-1腐植酸與薄膜粉體的動力吸附實驗 53 4-1-2腐植酸在不同pH值的吸附實驗 53 4-1-3水楊酸與薄膜粉體的動力吸附實驗 57 4-1-4水楊酸在不同pH值的吸附實驗 57 4-1-5藻酸與薄膜粉體的動力吸附實驗 59 4-1-6藻酸在不同pH值的吸附實驗 59 4-2以薄膜模組進行實際過濾試驗的結果 61 4-2-1 PVDF薄膜的界達電位 61 4-2-2單一物種對薄膜阻塞的影響 63 4-2-2-1不同有機物對薄膜阻塞的影響 63 4-2-2-2 MF對不同有機物之去除率比較 67 4-2-2-3 Latex particles的界達電位 70 4-2-2-4不同顆粒大小對薄膜阻塞的影響 71 4-2-3兩種物種混合對薄膜阻塞的影響 75 4-2-3-1藻酸的膠凝現象 75 4-2-3-2 Latex particles及鈣離子對薄膜阻塞的影響 79 4-2-3-3 Latex particles及藻酸對薄膜阻塞的影響 82 4-2-3-4藻酸及鈣離子對薄膜阻塞的影響 86 4-2-3-5藻酸及鈣離子對NPDOC的去除影響 86 4-2-3-6藻酸及不同鈣離子濃度對薄膜阻塞的影響 88 4-2-4 Latex particles、鈣離子及藻酸三者混合對薄膜阻塞的影響 88 第五章 結論與建議 93 5-1結論 93 5-2建議 94 參考文獻 95 圖目錄 圖2-1各種不同薄膜之孔徑大小及驅動方式 5 圖2-2薄膜相關材質 8 圖2-3平板式薄膜模組 9 圖2-4螺捲式薄膜模組 9 圖2-5管狀式薄膜模組 10 圖2-6中空纖維膜薄膜模組 10 圖2-7 Dead end過濾與Crossflow過濾之之示意圖 13 圖2-8傳統砂濾和薄膜過濾之顆粒粒徑大小比較 15 圖2-9濃度極化模式 18 圖2-10水體中營養鹽類之循環 20 圖2-11甘露糖醛酸(β-D-mannuronic)及葛蘿酸(α-L-guluronic) 28 圖2-12甘露醣醛酸和葛蘿酸形成藻酸的銜接方式 28 圖2-13甘露醣醛酸和葛蘿酸形成藻酸的排列方式 28 圖2-14鈣離子鑲嵌在藻酸之方式 29 圖3-1薄膜模組簡圖 31 圖3-2薄膜系統設備圖 33 圖3-3製備貯存液流程圖 38 圖3-4單一物種過濾試驗流程圖 39 圖3-5混合物種過濾試驗流程圖 40 圖3-6藻酸之檢量線 42 圖3-7腐植酸之檢量線 42 圖3-8顆粒粒徑為0.8μm之檢量線 43 圖3-9顆粒粒徑為0.05μm之檢量線 43 圖3-10游離之鈣離子濃度檢量線 44 圖3-11薄膜分離程序圖 50 圖4-1腐植酸和薄粉體動力吸附實驗 54 圖4-2不同pH值下腐植酸在PVDF及CA粉體之吸附密度 54 圖4-3不同pH值下PVDF粉體吸附腐植酸後之界達電位值 56 圖4-4不同pH值下CA粉體吸附腐植酸後之界達電位值 56 圖4-5水楊酸和薄膜粉體動力吸附實驗 58 圖4-6不同pH值下水楊酸在PVDF及CA粉體的吸附密度 58 圖4-7藻酸和薄膜粉體動力吸附實驗 60 圖4-8不同pH值下藻酸在PVDF及CA粉體的吸附密度 60 圖4-9 PVDF膜的界達電位 62 圖4-10腐植酸對薄膜阻塞的影響 65 圖4-11藻酸對薄膜阻塞的影響 65 圖4-12水楊酸對薄膜阻塞的影響 66 圖4-13 MF對腐值酸之去除比較 68 圖4-14 MF對藻酸之去除比較 69 圖4-15 MF對水楊酸之去除比較 69 圖4-16 Latex particles的界達電位 70 圖4-17顆粒粒徑0.8μm對薄膜阻塞的影響 73 圖4-18顆粒粒徑0.1μm對薄膜阻塞的影響 74 圖4-19顆粒粒徑0.05μm對薄膜阻塞的影響 74 圖4-20顆粒粒徑為0.8μm混合鈣離子對薄膜阻塞的影響 80 圖4-21顆粒粒徑為0.1μm混合鈣離子對薄膜阻塞的影響 80 圖4-22顆粒粒徑為0.05μm混合鈣離子對薄膜阻塞的影響 81 圖4-23粒徑為0.8μm混合藻酸對薄膜的影響 84 圖4-24粒徑為0.1μm混合藻酸對薄膜的影響 84 圖4-25粒徑為0.05μm混合藻酸對薄膜的影響 85 圖4-26鈣離子混合藻酸對薄膜的影響 87 圖4-27鈣離子混合藻酸的NPDOC去除率 87 圖4-28 pH10不同硬度混合藻酸對薄膜的影響 89 圖4-29 0.08μm顆粒混合鈣離子及藻酸對薄膜的影響 89 圖4-30 0.1μm顆粒混合鈣離子及藻酸對薄膜的影響 90 圖4-31 0.05μm顆粒混合鈣離子及藻酸對薄膜的影響 90 表目錄 表2-1各薄膜程序適用之壓力 6 表2-2 MF孔徑與微生物之大小之比較 6 表2-3不同淨水程序對藻類之去除 27 表3-1 MF 薄膜規格表 32 表3-2實驗藥品廠牌及性質 35 表4-1 Latex particles在有背景鹽下界達電位之變化情形 73 表4-2 Latex particles及藻酸混合後界達電位之變化情形 77 表4-3 Latex particles及藻酸混合後顆粒粒徑變化情形 77 表4-4 Latex particles及氯化鈣混合後界達電位變化情形 78 表4-5 Latex particles、藻酸及氯化鈣混合後界達電位變化情形78 表4-6 藻酸、膠體顆粒及氯化鈣混合後游離鈣濃度變化情形 91

    Amy, G. L., Collins M. R., Kuo, C. J., King, P. H.(1987)“Comparing GPC and UF on Molecular Weight Characterization of Aquatic Organic Matter,” Jour. AWWA, Vol. 79, pp. 43-49.
    Anselme, C. et al.(1991)“Optimum Use of Membrane Processes in Drinking Water treatment,” paper presented at the 19th IWSA Congress, Budapest, Hungary.
    Ando A., Miwa M., Kajino M., and Tatsumi S.(1992)“Removal of MustyordorousCompounds in Water and Retained in Algal Cells through Water Purification Processes”, J. AWWA, Oct., pp. 45-41.
    Adham, S. S., Snoeyink, V. L., Clark, M.M. and Anselme, C.(1993)“Predicting and verifying TOC removal by PAC in pilot-scale UF system”, J. AWWA, Vol. 85, No. 12, pp. 58-68.
    Allgeler, S. C. and Summers R. S.(1995)“Evaluating NF for DBP Control with the RBSMT”, J. AWWA, Vol. 87, pp.87-99.
    Agbekodo, K. M., Legube B. and P. Cote.(1996)“Organics in NF Permeate”,J. AWWA, Vol. 88, pp. 67-74.
    Aptel, P. and Buckley C. A.(1996)“ Catergories Of Membrane Operations” Water Treatment Membrane Process, J. Mallevialle, P.E. Odendaal, and M.R. Wiesner, McGraw-Hill, Singapore.
    Bernhardt, H.(1984)“Treatment disturbance with water out of eutrophic reservoirs as consequences of extensive Algal development”, Water Supply, Vol. 12, No.1-4, pp. 4-7-15.
    Bernhardt, H., Hoyer, O., Schell, H. and Lusse B.(1985)”Reaction mechanism involved in the influence of algogenic organic matter on flocculation”, Z Wasser-Abwasser-Forsch, Vol. 18, pp. 18-30.
    Belitz H. and Grosch W.(1987) “Food Chemistry”, pp. 237-238. Springer, Berlin.
    Burden, D. G. and Malone, R. F.(1987)“Instability in a small hypereutrophic urban lake”, Environmental Monitoring and Assessment, Vol. 9, pp. 13-24.
    Chang, J. S., Tsai, L. J. and Vigmeswaran, S.(1996)”Experimental investigation of The Effect of Particle Size Distribution of Suspended Particles on Microfiltration”, Wat. Sci. Tech. Vol.34, No 9, pp. 133-140.
    Chang, Y. and Benjamin, M. M.(1996) “Iron Oxide Adsorption and UF to Remove NOM and Control Fouling”, J. AWWA, Vol. 88, No. 12, pp.74-88.
    Cheryan, M.(1998)“Ultrafiltration and Microfiltration Handbook,” Technomic publish Co. p.46.
    Carroll, T. and Booker, N. A.(2000)“Axial features in the Fouling of Hollow-Fiber Membranes” Jour. Membrance Sci., Vol. 168 pp.203-212.
    Draget, K. I., SkjåK-BræK, G. and Smidsrød, O.(1997)”Alginate based new materials”,Jour. Of Biological Macromolecules, Vol. 21 pp. 47-55.
    Grant, G. T., Morris, E. R., Rees, D. A., Smith, P. J. C., and Thom, D. (1973)“Biological interactions Between Polysaccharides and Divalent Cations: The Egg-Box Model”, Febs Letters, Vol. 32, No.1 pp.195-198.
    Henderson-Sellers, B.and Markland H. R.(1987)”Decaying lakes, the origins and control of cultural eutrophication”, New York.
    Huang, C. and Yang, Y. L.(1995)“Adsorption Characteristics of Cu(Ⅱ) on Hums-Kaolin Complexes”, Wat. Res. Vol. 29, No. 11, pp. 2455-2460.
    Izaguirre G.(1982)“Geosmin and 2-Methylisoborneol from Cyanobacteria in Three Water Supply System”, Appl. Environ. Microbiol. Vol. 43. 708-714.
    Jacangelo, J. G., Aieta, E. M., Carns, K.E., Cummings, E. W., and Mallevialle J.(1989)“Assessing Hollow-Fiber Ultrafiltration for Particulate Removal”, J. AWWA, Vol. 89.
    Jacangelo, J.G., Laine, J.M., Cummings, E.W. and Adham, S.S.(1995)“UF with Pertreatment for Removing DBP Precursors”, J. AWWA, Vol.87, No 3, pp.100-115.
    Jacangelo, J. G., and Buckley, C. A.(1996)“ Microfiltration ” Water Treatment Membrane Process, J. Mallevialle, P.E. Odendaal, and M.R. Wiesner, McGraw-Hill, Singapore.
    Kawamura S.(1991)”Effectiveness of natural polyelectroytes in water treatment”, J. AWWA. Vol 10, pp. 88-91.
    Laîne, J. M. and Anselme, C.(1995)“Ultrafiltration Technology Status Overview in Municipal Drinking Water,” Poster presented at the 20th Congress IWSA Conference, September 9-15, Durban, South Africa.
    Maloney T. E.(1963)“Research on Algal Odor,” J. AWWA. Vol. 46, pp. 481-486.
    Martin, R.(1998)”Effects and Mechanisms Involved in Preoxidation and Particle Separation Process”, Wat. Sci. Tech., Vol. 37, No. 10 pp. 1-7.
    Mouchet, P. and Bonnelye, V.(1998)” solving Algae Problems : French Expertise and World-wide Applications “, J. Eater SRT-Aqua, Vol. 47, No. 3, pp. 125-141.
    Nguyen, M. T. and Ripperger, S.(2002)”Investigation on the Effect of Flocculants on the Filtration Behavior in Microfiltration of Fine Particles”, Desalination, Vol. 147 pp. 37-42
    Nilson, J. A. and Digiano, F. A.(1996)“Influence of NOM Composition on Nanofiltration,”, J. AWWA, vol. 88, No. 5, pp. 53-66 .
    Pirbazari, M., Badriyha, B. N. and Ravindran, V.(1992)“MF-PAC for Treating Waters Contaminated With Natural and Synthetic Organics”, J. AWWA, Vol. 83, No.12, pp.61-68.
    Peterson H. G. et al.(1995)”Physiological Toxicity, Cell Membrane Damage and the Release of Dissolved Organic Carbon and Geosmin by Aphanizomenon Flocs-aquae after Explore to Water Treatment Chemicals”, Wat.Res., Vol. 29, No. 6, pp. 1515-1523.
    Reckhow, K. H. and S. C. Chapra(1983)“Engineering approaches for lake management. volumn 1: data analysis and empirical modeling”, Butterworth Publishers Inc.
    Schäfer, A. I., Schwicker, U., Fischer, M. M., Fane, A. G. and Waite, T. D.(2000)” Microfiltration of colloids and natural organic matter” J. Membrane Sci. Vol. 171, pp.1-12.
    Sonnendberg, L. B.,Johnson, J. D., and Christman, R. F.(1988)”Chemical Degradation of Humic Substances for structural Characterization,” America Chemical Society, pp.1-22.
    Wang , Z., Zhang, Q., Konno, M. and Saito, S.(1993)”Sol-gel transition of alginate solution by the addition of various divalent cations: 13C-nmr spectroscopic study”, Biopolymers Vol. 33, pp. 703-711.
    Wiesner, M. R., and Aptel, P.(1996)“Mass Transfer And Permeate Flux and Fouling in Pressure-Driven Process”, Water Treatment Membrane Process, J. Mallevialle, P. E. Odendaal, and M. R. Wiesner, McGraw-Hill, Singapore.
    Yuan W. and Zydney A.L.(1999)“Humic acid fouling during microfiltration”, J. Membrane Sci. vol.157, pp. 1-12.
    Yuan W. and Zydney A.L.(1999)“Effects of Solution Environment on humic Acid Fouling during Microfiltration”, Desalination vol.122, pp. 63-76.
    中興顧問社(1986),翡翠水庫水質調查研究報告.
    陳從和(1977),澄清湖浮游生物研究報告,自來水季刊十一期, pp.69-83.
    陳是瑩、曾怡禎(1984)“澄清湖生態研究Ι:澄清湖水質與藻類季節性變遷的研究”, 中華民國自來水協會第一屆給水技術研討會論文集.
    程樹森(1986),台北地區蓄水庫優養潛勢之初步探討及藻類去除技術之研究,台灣大學環境工程研究所碩士論文.
    馮纘華(1983),水庫水質變化與特性,土木水利論文專集二,
    pp. 33-42.

    下載圖示 校內:立即公開
    校外:2003-08-12公開
    QR CODE