簡易檢索 / 詳目顯示

研究生: 吳朝欽
Wu, Chao-Chin
論文名稱: 微型核酸萃取晶片之研發
Development of a Nucleic Acid Extraction Microchip
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 89
中文關鍵詞: 聚合酶鏈鎖反應熱傳導核酸萃取微機電金奈米粒子
外文關鍵詞: DNA extraction, MEMS, Gold colloid, Heat transfer, PCR
相關次數: 點閱:63下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   由於分子生物技術重要性逐年增加,其對核酸來源之需求也逐年增加,核酸主要來源由化學法及物理法從細胞內萃取。傳統之化學萃取法效率不高且萃取時間長,對於操作人員技術要求高。近年來,各式微機電製程之核酸萃取晶片發表,但是其萃取效率低於傳統法且對樣本需求量仍高。因此本研究擬以微機電製程製作具起始電極及三週期升降溫循環之核酸萃取晶片,期能得到較高之萃取效率及降低之樣本需求量。除了晶片研製外,我們以microLYSIS核酸萃取藥劑配合晶片萃取核酸,再自行設計之綠螢光蛋白(Green Fluorescence Protein)及小鼠貝他肌動蛋白(mice -actin)之核酸引子配合即時偵測聚合酶鍊鎖反應(Real Time PCR)檢測晶片之核酸萃取效率,與利用瓊膠電泳觀察其萃取產物之正確性。

      實驗的方式首先以數值模擬三維向量空間之熱、流與電耦合場作為設計的依據,並以即時熱值量測系統分析核酸萃取晶片之加熱效率,發現萃取晶片之加熱及散熱結果符合模擬結果。我們所設計之核酸萃取晶片較佳流體流速為0.010 mL/min,起始電極施加0.25伏特及加熱電極施加0.49伏特之電壓,實驗分別萃取1 L之大腸桿菌及小鼠成骨細胞作為樣本,以Real Time PCR分析其萃取效率CT值分別為 20.98及37.21,以瓊膠電泳分析PCR產物發現其產物皆為正確產物。此外欲藉由金奈米粒子之熱傳效應,進一步提高晶片之萃取效率,目前實驗發現13 nm直徑之金奈米粒子在相同條件下可再減少CT值0.78,提升核酸萃取晶片之萃取效率效果並不顯著,整個實驗過程將記述於本論文中。

     Nucleic acid purification is a very important method in molecular biology. The source of DNA could be extracted from cells or bacteria through chemical and physical methods. Conventional chemical method has complex procedures and needs a large amount of samples to recover enough DNA. For designing the microchip, a 3-D modeling coupled with three physical properties (electricity, fluid and heat) was simulation by numerical method. And the real time temperature measurement was performed by using the thermocouple. The nucleic acid extraction microchip was fabricated by the MEMS technology including photolithography, thin film deposition and wet etch techniques. The microchip contains one starting electrode and three heat electrodes for extraction procedures of microLYSIS reagent. We hope that new microchip has high extraction efficiency and low consumption of necessary samples. The extraction efficiency of the microchip was evaluated by real-time PCR, and GFP DNA fragment and mice -actin primer. The DNA length of PCR products were checked by gel electrophoresis.

     The coupling-field simulation of 3-D electric field, fluid and heat transfer was conducted for the design of the microchip. And three kinds of physical interfaces on the electric field were established by using the CFD-RC software. Compared with the temperature profiles of micro-channels in the microchip, simulation results were in good agreement with experimental results. The microchip was examined by loading 0.25 V in starting electrode, and 0.49 V for heating electrode at 0.01 mL/min flow rate with 1 L of samples of Escherichia coli or mice osteoblast cells, MC3T3E-1 injected. The CT values of Escherichia coli and MC3T3E-1 were 20.98 and 37.21 by real-time PCR, respectively and all PCR products were correct as evidenced by gel electrophoresis examination. In order to improve extraction efficiency of the microchip, 13 nm gold colloid was added to the extracted samples for enhancing the extraction efficiency. The results demonstrated that the CT value was decreased by about 0.78 compared with that without gold colloid added.

    摘要                          I Abstract                      III 誌謝                          V 目錄                         VI 圖目錄                        VIII 表目錄                         XI 第一章 緒論                        1 1.1. 前言                      1 1.2. 文獻回顧                     2 1.3. 動機                      4 第二章 核苷酸萃取晶片之熱傳理論及分析方法         6 2.1. 微流道熱傳                     8 2.2. 流道與電化學阻隔層熱平衡問題            11 2.3. 奈米熱傳介紹                    12 2.4. 核酸萃取分析方法介紹              15 第三章 核酸萃取晶片與微流道設計及模擬          19 3.1. 晶片設計                     19 3.1.1. 微電極設計                    22 3.1.2. 微流道設計                    25 3.1.3. 電化學阻隔層設計               27 3.1.4. 晶片固定器設計                   28 3.2. 微流道模擬數值方法建立             30 3.2.1. CFD-RC軟體模型及網格建立              30 3.2.2. CFD-RC邊界與參數設定               32 第四章 微型核酸萃取晶片製程與實驗平台架設         34 4.1. 微型核酸萃取晶片微機電製程            34 4.1.1. 晶片微機電製程                   34 4.1.2. 晶片組裝與整合                   38 4.2. 微型核酸萃取晶片實驗平台設計            38 4.2.1. 晶片實驗系統平台架設              39 4.2.2. 導電接觸插槽                    40 4.3. 熱電偶溫度量測系統架設             42 4.4. 細胞樣本準備與藥劑調配             44 第五章 微型核酸萃取數值模擬結果與晶片溫層量測分析  48 5.1. 不同流速之流道熱傳耦合場模擬           48 5.2. 不同起始溫層循環晶片之流道熱傳耦合場模擬    52 5.3. 微流道溫層量測結果分析             55 5.4. 不同流速時之溫層循環晶片之量測值與模擬數值分析   56 5.5. 不同起始溫層循環晶片之量測值與模擬數值分析    58 5.6. 添加金奈米之流體熱傳量測分析           61 第六章 微型核酸萃取晶片效率分析          64 6.1. 傳統水浴法與晶片萃取效率之比較          64 6.2. 晶片最佳化參數測試             69 6.3. 金奈米增加晶片萃取效率測試           76 6.4. 哺乳動物成骨細胞MC3T3E-1之晶片法萃取       80 第七章 結論與建議                  82 7.1. 結論                     82 7.2. 建議                     83 參考文獻                        85

    [1] Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, A.H. Paulus, L.H.M. Widmer, “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring System,” Journal of Chromatography, 593, pp. 253-258, 1992.
    [2] B. Fouque, B. Schaack, P. Obeid, S. Combe, S. Getin, P. Barritault, P. Chaton, F. Chatelain, “Multiple wavelength fluorescence enhancement on glass substrates for biochip and cell analyses,” Biosens and Bioelectronics, 20, pp. 2335-2340, 2005.
    [3] Z. Hu, M. Troester, C.M. Perou, “High reproducibility using sodium hydroxide-stripped long oligonucleotide DNA microarrays,” Biotechniques, 1, pp. 121-124, 2005.
    [4] M. von Nickisch-Rosenegk, X. Marschan, D. Andresen, A. Abraham, C. Heise, F.F. Bier, “On-chip PCR amplification of very long templates using immobilized primers on glassy surfaces,” Biosens and Bioelectronics, 20, pp. 1491-1498, 2005.
    [5] R.F. Wang, S.J. Kim, L.H. Robertson, C.E. Cerniglia, “Development of a membrane-array method for the detection of human intestinal bacteria in fecal samples,” Molecular and Cellular Probes, 16, pp. 341-350, 2002.

    [6] T. Kukar, S. Eckenrode, Y. Gu, W. Lian, M. Megginson, J.X. She, D. Wu, “Protein microarrays to detect protein-protein interactions using red and green fluorescent proteins,” Analytical Biochemistry, 306, pp. 50-54, 2002.
    [7] M.F. Templin, D. Stoll, M. Schrenk, P.C. Traub, C.F. Vohringer, T.O. Joos, “Protein microarray technology,” Trends in Biotechnology, 20, pp. 160-166, 2002.
    [8] J.X. Huang, D. Mehrens, R. Wiese, S. Lee, S.W. Tam, S. Daniel, J. Gilmore, M. Shi, D. Lashkari, “High-throughput genomic and proteomic analysis using microarray technology,” Clinical Chemistry, 47, pp. 1912-1916, 2001.
    [9] R.P. Huang, “Detection of multiple proteins in an antibody-based protein microarray system,” Journal of Immunological Methods, 255, pp. 1-13, 2001.
    [10] R.K. Saiki, S. Scharf, F. Faloona, K.B. Mullis, G.T. Horn, H.A. Erlich, N. Arnheim, “Enzymatic Amplification of -Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia,” Science, 230, pp. 1350-1354, 1985.
    [11] A.T. Woolley, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Narthrup, “Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA analysis Device,” Analytical Chemistry, 68, pp. 4081-4086, 1996.

    [12] J. Geciova, D. Bury, P. Jelen, “Methods for disruption of microbial cells for potential use in the dairy industry-a review,” International Dairy Journal, 12, pp. 541-553, 2002.
    [13] A.S. Cochran, R.M. Prausnitz, “Sonoluminescence as an Indicator of Cell Membrane Disruption by Acoustic Cavitation,” Ultrasound in Medicine & Biology, 27, pp. 841-850, 2001.
    [14] D.D. Carlo, J.K. Hun, L.P. Luke, “Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation,” Lab on a Chip, 3, pp. 287- 291, 2003.
    [15] S.W. Lee, Y.C. Tai, “A micro lysis device,” Sensors and Actuators, 73, pp. 74-79, 1999.
    [16] J.W. Hong, T. Fujii, M. Seki, T. Yamamoto, I. Endo, ” Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip,” Electrophoresis, 22, pp. 328-333, 2001.
    [17] P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastmen, “Mechanism of heat flow in suspension of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, 45, pp. 855-863, 2002.
    [18] Y. Xaun, Q. Li, “Heat transfer enhancement of nanofluids,” International Journal of Heat and Fluid Flow, 21, pp. 58-64, 2000.

    [19] A.A. Joshi, A. Majumdar, “Transient ballistic and diffusive phonon heat transport in thin films,” Journal of Applied Physics, 74, pp. 31-34, 1993.
    [20] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, “Anormalously increased effective thermal conduvtivities of ethylene gycol-based nanofluids containing copper nanoparticles,” Applied Physics Letters, 78, pp. 718-720, 2001.
    [21] Z. Hashin, S. Shtrikman, “A variational approach to the theory of the effive magnetic permeability of multiphase materials,” Journal of Applied Physics, 33, pp. 3125-3131, 1962.
    [22] J.R. Henderson, F. van Swol, “On the interface between a fluid and a planar wall:theory and simulation of hard sphere fluid at a hard wall,” Molecular Physics, 51, pp. 991-1010, 1986.
    [23] F. Ni, G.Q. Gu, K.M. Chen, “Effective thermal conductivity of nonlinear composite media with contact resistance,” International Journal of Heat and Mass Transfer, 40, pp. 943-949, 1997.
    [24] T. Ishiguro, J. Saitoh, R. Horie, T. Hayashi, T. Ishizuka, S. Tsuchiya, K. Yasukawa, Kido, T.Y. Nakaguchi, M. Nishibuchi, K. Ueda, “Intercalation activating fluorescence DNA probe and its application to homogeneous quantification of a target sequence by isothermal sequence amplification in a closed vessel,” Analytical Biochemistry, 314, pp. 77-86, 2003.

    [25] R. Schuurman, S. Descamps, G. Weverling, S. Kaye, J. Tijnagel, I. Williams, van R. Leeuwen, R. Tedder, C. Boucher, F. Brun-Veziner, C. Loveday, “Multicenter comparison of three commercial methods of quantification of human immunodeficiency virus type I RNA in plasma,” Journal of Clinical Microbiology, 34, pp. 3016-3022, 1996.
    [26] M.W. Linder, R.A. Prough, R.J. Valdes, “Pharmacogenetics : a laboratory tool for optimizing therapeutic efficiency,” Clinical Chemistry, 43, pp. 254-266, 1997.
    [27] A. Backman, B. Johansson, P. Olsen, “Nested PCR optimized for detection of Bordetella pertussis in clinical nasopharyngeal samples,” Journal of Clinical Microbiology, 32, pp. 2544-2548, 1994.
    [28] M.J. Graham, C.D. Nickell, A.L. Rayburn, “Relationship between genome size and maturity group in soybean,” Theory of Applied Genetics, 88, pp. 429-432, 1994.

    下載圖示 校內:2015-08-29公開
    校外:2015-08-29公開
    QR CODE