| 研究生: |
劉浩業 Liu, Hao-Yeh |
|---|---|
| 論文名稱: |
具特定表面處理之氮化鎵系化學感測器 GaN-Based Chemical Sensors with Specific Surface Treatments |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 離子感測場效電晶體 、表面處理 、酸鹼感測器 、氫氣感測器 、氨氣感測器 、蕭特基二極體 |
| 外文關鍵詞: | ISFET, Surface treatment, pH sensor, Hydrogen sensor, Ammonia sensor, Schottky diode |
| 相關次數: | 點閱:91 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,主要探討以過氧化氫對氮化鎵/氮化鋁鎵/氮化鎵高電子遷移率電晶體之氮化鎵表面進行氧化反應,並生成自然氧化層,藉由此氧化層提升氫離子及氣體感測之能力。
在氫離子感測方面,吾人研製以氮化鎵/氮化鋁鎵/氮化鎵高電子遷移率電晶體為基材,並以過氧化氫進行表面處理之離子感測場效電晶體。本實驗之目的為比較氮化鎵表面與經過氧化氫表面處理之氮化鎵表面自然氧化層(GaxOy)之氫離子感測特性。以GaxOy為感測膜之元件所測得之氫離子感測靈敏度為53.68 mV/pH、電流感測靈敏度為-25.24 μA/pH、遲滯變化為0.4 mV、於pH 7溶液中長時間(12小時)量測之電流偏移量為0.63 μA/hr。與傳統感測氫離子之玻璃電極相比,本實驗研製之元件具有反應時間快、小體積、結構簡單及易與現行之CMOS製程技術相結合等優點。故以氮化鎵自然氧化層作為感測膜之離子場效電晶體非常適合作為生物及化學感測器方面之應用。
在氣體感測方面,吾人研製以氮化鎵/氮化鋁鎵/氮化鎵高電子遷移率電晶體為結構之蕭特基接觸式氣體感測器元件,並各別以鈀金屬與鉑金屬製作蕭特基接觸金屬,用以感測氫氣與氨氣,主要目的在於比較此二元件經過氧化氫表面處理及未經表面處理之氣體感測特性,實驗之元件是在空氣環境中通入不同濃度的氫氣(氨氣)來研究其氫氣(氨氣)響應特性及反應時間等。由於本實驗所研製之元件呈現良好之感測特性,且製程方法能與CMOS製程技術相結合,因此在高效能感測器與微機電系統整合方面極具潛力。
In this study, the native oxide (GaxOy) layer is formed on GaN surface of GaN/AlGaN/GaN high-electron-mobility transistor (HEMT) by immersing into H2O2 solution. The native oxides on GaN surfaces can improve the sensing capability on hydrogen ions and gases.
For hydrogen ion sensing, ion-sensitive field-effect-transistor (ISFET) devices prepared by hydrogen peroxide (H2O2) treatment on GaN/AlGaN/GaN HEMT structure were investigated. The native oxides on GaN surfaces were grown by immersing into H2O2 solution at 300 K. The studied ISFET devices with native oxides were applied to measure the changes of the ion concentrations in an ambient electrolyte. The pH sensitivity of voltage and current was 53.68 mV/pH and -25.24 μA/pH for GaxOy surfaces. In addition, the corresponding long-time drift variation (0.63 μA/hr) and hysteresis property (0.4 mV) of studied ISFET device were investigated. Compared with the conventional pH glass electrodes, the studied ISFETs have many advantages of high sensitivity, short response time, small size, simple structure, easy integration and high compatibility with CMOS technology. Therefore, the studied ISFETs with native oxide sensing films are very promising for biological and chemical sensor applications.
For gas sensing, Schottky-type gas sensors prepared by H2O2 solution on GaN/AlGaN/GaN structure were investigated. Pd and Pt were chosen as Schottky contacts metal to detect hydrogen and ammonia gas, respectively. The main purpose is to compare the gas sensing properties of devices with and without H2O2 treatment. Hydrogen and ammonia sensing behaviors of studied devices are investigated in terms of sensing response and response time with different gas concentrations. Based on excellent results and compatibility of CMOS fabrication techniques of studied devices, the studied devices show the promise for the integration of high-performance sensor and micro-electro-mechanical system (MEMS).
[1] Eftekhari, “pH sensor based on deposited film of lead oxide on aluminum substrate electrode,” Sens. Actuator B, vol. 88, pp. 234-238, 2003.
[2] P. Shuk and K.V. Ramanujachary, “New metal-oxide-type pH sensors,” Solid State Ion., vol. 86-88, pp. 1115-1120, 1996.
[3] L. Bousse, N. F. De Rooij, and P. Bergveld, “Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface,” IEEE Trans. Electron Devices, vol. 30, pp. 1263-1270, 1983.
[4] B. D. Liu, Y. K. Su, and S. C. Chen, “Ion sensitive field effect transistor with silicon nitride gate for pH sensing,” INT. J. Electronics, vol. 67, pp. 59-63, 1989.
[5] K. Chen, G. Li, H. Lu, and L. Chen, “Effect of total hydrogen content in silicon nitride sensitive film on performance of ISFET,” Sens. Actuator B, vol. 12, pp. 23-27, 1993.
[6] H. Abe, M. Esashi, and T. Matsuo, “ISFETs using inorganic gate thin-films,” IEEE Trans. Electron Devices, vol. 26, pp. 1939-1944, 1979.
[7] M. J. Schöning, D. Tsarouchas, L. Beckers, J. Schubert, W. Zander, P. Kordoŝ, and H. Lüth, “A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique,” Sens. Actuator B, vol. 35, pp. 228-233, 1996.
[8] J. C. Chou and J. L. Chiang, “Ion sensitive field effect transistor with amorphous tungsten trioxide gate for pH sensing,” Sens. Actuator B, vol. 62, pp. 81-87, 2000.
[9] J. L. Chiang, S. S. Jan, J. C. Chou, and Y. C. Chen, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide,” Sens. Actuator B, vol. 76, pp. 624-628, 2001.
[10] S. Poghossian, “The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs,” Sens. Actuators B, vol. 7, pp. 367-370, 1992.
[11] H. Hara and T. Ohta, “Dynamic response of a Ta2O5-gate pH-sensitive field-effect transistor,” Sensors and Actuators B: Chemical, vol. 32, pp. 115-119, 1996.
[12] Y. L. Chin, J. C. Chou, Z. C. Lei, T. P. Sun, W. Y. Chung, and S. K. Hsiung, “Titanium nitride membrane application to extended gate field effect transistor pH sensor using VLSI technology,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 40, pp. 6311-6315, 2001.
[13] J. L. Chiang, J. C. Chou, Y. C. Chen, G. S. Liau, and C. C. Cheng, “Drift and hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 4973-4977, 2003.
[14] J. L. Chiang, J. C. Chou, and Y. C. Chen, “Study on Light and Temperature Properties of AlN pH-Ion-Sensitive Field-Effect Transistor Devices,” Japanese Journal of Applied Physics, vol. 44, pp. 4831-4837, 2005.
[15] P. D. Batista and M. Mulato, “ZnO extended-gate field-effect transistors as pH sensors,” Applied Physics Letters, vol. 87, pp. 143508-3, 2005.
[16] E. M. Guerra, G. R. Silva, and M. Mulato, “Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol–gel method,” Solid State Sciences, vol. 11, pp. 456-460, 2009.
[17] R. Zhao, M. Xu, J. Wang, and G. Chen, “A pH sensor based on the TiO2 nanotube array modified Ti electrode,” Electrochimica Acta, vol. 55, pp. 5647-5651, 2010.
[18] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study on extended gate field effect transistor with tin oxide sensing membrane,” Mater. Chem. Phys., vol. 63, pp. 19-23, 2000.
[19] H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, and S. K. Hsiung, “Study of amorphous tin oxide thin films for ISFET applications,” Sensors and Actuators B: Chemical, vol. 50, pp. 104-109, 1998.
[20] Y. H. Liao and J. C. Chou, “Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system,” Sensors and Actuators B: Chemical, vol. 128, pp. 603-612, 2008.
[21] T. Akiyama, Y. Ujihira, Y. Okabe, T. Sugano, and E. Niki, “Ion-sensitive field-effect transistors with inorganic gate oxide for pH sensing,” IEEE Transactions on Electron Devices, vol. 29, pp. 1936-1941, 1982.
[22] C. S. Lai, T. F. Lu, C. M. Yang, Y. C. Lin, D. G. Pijanowska, and B. Jaroszewicz, “Body effect minimization using single layer structure for pH-ISFET applications,” Sensors and Actuators B: Chemical, vol. 143, pp. 494-499, 2010.
[23] P. Bergveld, “Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuator B, vol. 88, pp. 1-20, 2003.
[24] P. Bergveld, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Trans. Biomed. Eng., vol. 17, pp. 70-71, 1970.
[25] V. K. Khanna, “Advances in chemical sensors, biosensors and microsystems based on ion-sensitive field-effect transistor,” Indian journal of pure & applied physics, vol. 45, pp. 345-353, 2007.
[26] G. Korotcenkov, “Chemical Sensors: Comprehensive Sensor Technologies,” Momentum Press, vol. 5, pp. 180-203. 2011.
[27] D. E. Yates, S. Levine, and T. W. Healy, “Site-binding model of the electrical double layer at the oxide/water interface,” J. Chem. Soc., Faraday Trans., vol. 70, pp. 1807-1818. 1974.
[28] W. M. Siu, and R. S. C. Cobbold, “Basic properties of the electrolyte-SiO2-Si system - physical and theoretical aspects,” IEEE transactions on electron devices, vol. 26, pp. 1805-1815. 1979.
[29] P. Bergveld, “ISFET, theory and practice,” Proceeding of IEEE sensor conference, pp. 1-26. 2003.
[30] A. A. Poghossian “Determination of the pHpzc of insulators surface from capacitance–voltage characteristics of MIS and EIS structures,” Sens. Actuators B, vol. 44, pp. 551-553. 1997.
[31] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002.
[32] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection,” IEEE Tran. Compo. Packag. Manuf. Technol. Part A, vol. 18, pp. 252-256, 1995.
[33] A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid state gas sensor devices,” ch 3, New York: John Wily & Sons, 1993.
[34] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. 1-30, 1990.
[35] X. Wang, X. Wang, C. Feng, C. Yang, B. Wang, J. Ran, H. Xiao, C. Wang, and J. Wang, “Hydrogen sensors based on AlGaN/AlN/GaN HEMT, ” Microelectronics Journal, vol.39(1), pp. 20-23, 2008.
[36] P. Gruendler, “Chemical Sensors,” Springer, Berlin, Chapter 1, pp. 9, 2007.
[37] G. Korotcenkov, “Chemical Sensors: Comprehensive Sensor Technologies,” Momentum Press, vol. 4, pp. 187, 2011.
[38] D. G. Castner, and B. D. Ratner, "Biomedical surface science: Foundations to frontiers," Surf. Sci., vol. 500, no. 1-3, pp. 28-60, 2002.
[39] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol.26, pp. 55-57, 1975.
[40] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd/GaAs Schottky Diodes Prepared by Electroless Plating Technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003.
[41] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A New Hydrogen Sensor Based on a Pt/GaAs Schottky Diode,” J. Electrochem. Soc., vol. 138, pp. 159-161, 1991.
[42] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-state. Electron, vol. 25, pp. 753-758, 1982.
[43] V. Battut, J. P. Blanc, E. Goumet, V. Soulière, and Y. Monteil, “NO2 sensor based on InP epitaxial thin layers,” Thin Solid Films, vol. 348, pp. 266-272, 1999.
[44] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
[45] H. I. Chen and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., vol. 19, pp. 39-44, 2004.
[46] V. Battut, J. P. Blanc, and C. Maleysson, “Gas sensitivity of InP epitaxial thin layers” Sens. Actuators B, vol. 44, pp. 503-506, 1997.
[47] Y. I. Chou, C. M. Chen, and H. I. Chen, “A new Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,“ IEEE Electron Device Lett., vol. 26(2), pp. 62-65, 2005.
[48] H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEEE Electron. Lett., vol. 38, pp. 92-94, 2002
[49] A. L. Spetz, L. Nnëus, H. Svenningstrop, P. Toblas, L.-G. Ekedahl and O. Larsson et al., “SiC based field effect gas sensors for industrial applications,” Phys Status Solidi A, vol. 185, pp. 15–25, 2001.
[50] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier and M. Eickhoff, “A highly stable SiC based microhotplate NO2 gas-sensor, ” Sensor Actuators B, vol. 78, pp. 216–220, 2001.
[51] S. Roy, C. Jacob, and S. Basu, “Ohmic contacts to 3C–SiC for Schottky diode gas sensors,” Solid-State Electron, vol. 47, pp. 2035–2041, 2003.
[52] F. Qiu, M. Matsumiya, W. Shin, N. Izu and N. Murayama, “Investigation of thermoelectric hydrogen sensor based on SiGe film,” Sens. Actuators B, vol. 94, pp. 152-160, 2003.
[53] Y. Gurbuz, , W. P. Kang, J. L. Davidson, and D. V. Kerns, “Current Conduction Mechanism and Gas Adsorption Effects on Device Parameters of the Pt/SnO /Diamond Gas Sensor, ” IEEE Trans. Electron Devices., vol. 46, pp. 914-920, 1999.
[54] Y. Gurbuz, W. P. Kang, J. L. Davison, and D. V. Kerns, “Diamond microelectronic gas sensors,” Sens. Actuators B, vol. 33, pp. 100-104,1996.
[55] Y. Gurbuz, W. P. Kang, J. L. Davidson, and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors, ” Sens. Actuators B, vol. 36, pp. 68-72, 1996.
[56] B. P. Luther, S. D. Wolter and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sensor Actuator B, vol. 56, pp. 164–168, 1999.
[57] J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren, “Hydrogen-sensitive GaN Schottky diodes,” Solid-State Electron, vol. 47, pp. 1069–1073, 2003.
[58] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electronics, vol. 49, pp. 1330-1334, 2005.
[59] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, “Chemical detection with a single-walled carbon nanotube capacitor,” Science, vol. 307, pp. 1942-1945, 2005.
[60] O. K. Varghese, P. D. Kichambre, D. Gong, K. G. Ong, E. C. Dickey, and C. A. Grimes, “Gas sensing characteristics of multi-wall carbon nanotubes,” Sensors and actuators b-chemical, vol. 81, pp. 32-41, 2001.
[61] P. R. N. Childs, J. R. Greenwood, and C. A. Long, “Review of temperature measurement,” Review of scientific instruments, vol. 71, pp. 2959-2978, 2000.
[62] J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor,” Smart materials & structures, vol. 13, pp. 1045-1049, 2004.
[63] V. V. Sysoev, B. K. Button, K. Wepsiec, S. Dmitriev, and A. Kolmakov, “Toward the nanoscopic "electronic nose": Hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors,” Nano letters, vol. 6, pp. 1584-1588, 2006.
[64] R. R. Reston, and E. S. Kolesar, “Silicon-micromachined gas-chromatography system used to separate and detect ammonia and nitrogen-dioxide .1. design, fabrication, and integration of the gas-chromatography system,” Journal of microelectromechanical systems, vol. 3, pp. 134-146, 1994.
[65] K. C. Ho, and Y. H. Tsou, “Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films,” Sensors and actuators b-chemical, vol. 77, pp. 253-259, 2011.
[66] Y. Joseph, B. Guse, A. Yasuda, and T. Vossmeyer, “Chemiresistor coatings from Pt- and Au-nanoparticle/nonanedithiol films: sensitivity to gases and solvent vapors,” Sensors and actuators b-chemical, vol. 98, pp. 188-195, 2004.
[67] U. Lange, N. V. Roznyatouskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Analytica chimica acta, vol. 614, pp. 1-26, 2008.
[68] G. Korotcenkov, “Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches,” Sensors and actuators b-chemical, vol. 107, pp. 209-232, 2005.
[69] S. Semancik, R. E. Cavicchi, M. C. Wheeler, J. E. Tiffany, G. E. Poirier, R. M. Walton, J. S. Suehle, B. Panchapakesan, and D. L. DeVoe, “Microhotplate platforms for chemical sensor research,” Sensors and actuators b-chemical, vol. 77, pp. 579-591, 2001.
[70] G. Korotcenkov, “The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors,” Materials science & engineering r-reports, vol. 61, pp. 1-39, 2008.
[71] N. Barsan, D. Koziej, and U. Weimar, “Metal oxide-based gas sensor research: How to?,” Sensors and actuators b-chemical, vol. 121, pp. 18-35, 2007.
[72] J. R. Stetter and K. F. Blurton, “Portable high-temperature catalytic reactor - application to air-pollution monitoring instrumentation,” Review of scientific instruments, vol. 47, pp. 691-694, 1976.
[73] J. R. Stetter and K. F. Blurton, “Selective oxidation of hydrogen in carbon monoxide-air streams - application to environmental monitoring,” Industrial & engineering chemistry product research and development, vol. 16, pp. 22-25, 1977.
[74] N. Yamazoe and N. Miura, “Potentiometric gas sensors for oxidic gases,” Journal of electroceramics, vol. 2, pp. 243-255, 1998.
[75] M. Holzinger, J. Maier, and W. Sitte, “Potentiometric detection of complex gases: Application to CO2,” Solid state ionics, vol. 94, pp. 217-225, 1997.
[76] T. Maruyama, S. Sasaki, and Y. Saito, “Potentiometric gas sensor for carbon-dioxide using solid electrolytes,” Solid State Ionics, vol. 23, pp. 107-112, 1987.
[77] A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, and K. S. Goto, “Solid-State Gas Sensors - A Review,” Journal of the electrochemical society, vol. 139, pp. 3690-3704, 1992.
[78] N. Miura, G. Y. Lu, and N. Yamazoe, “High-temperature potentiometric /amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode,” Sensors and actuators b-chemical, vol. 52, pp. 169-178, 1998.
[79] J. Ruzicka and E. H. Hansen, “New potentiometric gas sensor - air-gap electrode,” Analytica chimica acta, vol. 69, pp. 129-141, 1974.
[80] M. Holzinger, J. Maier, and W. Sitte, “Fast CO2-selective potentiometric sensor with open reference electrode,” Solid state ionics, vol. 86-8, pp. 1055-1062, 1996.
[81] H. Bai and G. Shi, “Gas sensors based on conducting polymers,” Sensors, vol. 7, pp. 267-307, 2007.
[82] U. Lange, N. V. Roznyatouskaya, and V. M. Mirsky, “Conducting polymers in chemical sensors and arrays,” Analytica chimica acta, vol. 614, pp. 1-26, 2008.
[83] O. K. Varghese, G. K. Mor, C. A. Grimes, M. Paulose, and N. Mukherjee, “A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations,” Journal of nanoscience and nanotechnology, vol. 4, pp. 733-737, 2004.
[84] J. Schalwig, G. Muller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Gorgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Applied physics letters, vol. 80, pp. 1222-1224, 2002.
[85] B. P. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sensors and actuators b-chemical, vol. 56, pp. 164-168, 1999.
[86] G. Alefeld and J. Völkl, “Hydrogen in metals I-basic properties,” ch 12, Berlin; Springer-Verlag, 1978.
[87] G. Alefeld and J. Völkl, “Hydrogen in metals II-Application-oriented properties,” ch 3, Berlin: Springer-Verlag, 1978.
[88] D. N. Jewett and A. C. Makrides, “Diffusion of hydrogen through palladium and palladium-silver alloy,” J. Chem. Soc. Faraday Trans., vol. 61, pp. 932-939, 1965.
[89] C. C. Huang, H. I. Chen, I. P. Liu, C. C. Chen, P. C. Chou, J. K. Liou, and W. C. Liu, “Comprehensive study of hydrogen sensing phenomena of an electroless plating (EP)-based Pd/AlGaN/GaN heterostructure field-effect transistor (HFET),” Sensors and actuators b-chemical, vol. 190, pp. 913-921, 2014.
[90] C. S. Hsu, K. W. Lin, and W. C. Liu, “A Wireless-Transfer-Based Hydrogen Gas Sensing System with a Pd/AlGaN/GaN Heterostructure Field-Effect Transistor (HFET),” IEEE sensors journal, vol. 13, pp. 2299-2304, 2013.
[91] A. Salehi, A. Nikfarjam, and D. J. Kalantari, “Pd/porous-GaAs Schottky contact for hydrogen sensing application,” Sens Actuators B, vol. 113, pp. 419-427, 2006.
[92] J. Schalwig, G. Müller, U. Karrer, M. Eickhoff, O. Ambacher, M. Stutzmann, L. Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002
[93] I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol. 14, pp.1539-1545, 1996.
[94] M. Tajkarli-Ni, H. P. Rlemann, M. N. Haji-Neer, E. L. Gomez, V. Razavilar, and D. O. Cliver, “Ammonia disinfection of animal feeds - Laboratory study,” International journal of food microbiology, vol. 122, pp. 23-28, 2008.
[95] A. Wlochowicz and E. Stelmasiak, “Change in thermal-properties of wool after treatment with liquid-ammonia,” Journal of thermal analysis, vol. 26, pp. 17-22, 1983.
[96] T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, J. S. Wu, P. C. Chou, and W. C. Liu, “ZnO-Nanorod-Based Ammonia Gas Sensors With Underlying Pt/Cr Interdigitated Electrodes,” IEEE electron device letters, vol. 33, pp. 1486-1488, 2012.
[97] T. Y. Chen, H. I. Chen, C. S. Hsu, C. C. Huang, C. F. Chang, P. C. Chou, and W. C. Liu, “On an Ammonia Gas Sensor Based on a Pt/AlGaN Heterostructure Field-Effect Transistor,” IEEE electron device letters, vol. 33, pp. 612-614, 2012.
[98] T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, “Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode,” Sensors and actuators b-chemical, vol. 155, pp. 347-350, 2011.
[99] T. Y. Chen, H. I. Chen, Y. J. Liu, C. C. Huang, C. S. Hsu, C. F. Chang, and W. C. Liu, “Ammonia Sensing Properties of a Pt/AlGaN/GaN Schottky Diode,” IEEE transactions on electron devices, vol. 58, pp. 1541-1547, 2011.
[100] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “The ammonia sensitivity of Pt/GaAs Schottky barrier diodes,” J. Appl. Phys., vol. 70, pp. 3348-3354, 1991.
[101] A. spetz, M. Armgarth, and I. Lundström, “Hydrogen and ammonia response of metal-silicon dioxide-silicon structure with thin platinum gate,” J. Appl. Phys., vol. 64, pp. 1274-1283, 1998.
[102] T. Hashizume, S. Ootomo, T. Inagaki, and H. Hasegawa, “Surface passivation of GaN and GaN/AlGaN heterostructures by dielectric films and its application to insulated-gate heterostructure transistors,” Journal of Vacuum Science & Technology B, vol. 21, pp. 1828-1838, 2003.
[103] A. Kolmakov and M. Moskovits, “Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures,” Annual review of materials research, vol. 34, pp. 151-180, 2004.
[104] C. T. Lee, Y. S. Chiu, and X. Q. R. Wang, “Performance enhancement mechanisms of passivated InN/GaN-heterostructured ion-selective field-effect-transistor pH sensors,” Sensors and Actuators b-chemical, vol. 181, pp. 810-815, 2013.
[105] A. Das, L. B. Chang, C. S. Lai, R. M. Lin, F. C. Chu, Y. H. Lin, L. Chow, and M. J. Jeng, “GaN Thin Film Based Light Addressable Potentiometric Sensor for pH Sensing Application,” Applied Physics Express, vol. 6, 2013.
[106] T. Brazzini, A. Bengoechea-Encabo, M. A. Sanchez-Garcia, and F. Calle, “Investigation of AlInN barrier ISFET structures with GaN capping for pH detection,” Sensors and actuators b-chemical, vol. 176, pp. 704-707, 2013.
[107] K. Tsukada, Y. Miyahara, and H. Miyagi, “Platinum-Platinum Oxide Gate pH ISFET,” Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 28, pp. 2450-2453, 1989.
[108] R. Gaska, Q. Chen, J. Yang, A. Qsinsky, M. Asif Khan, and M. S. Shur, “High-temperature performance of AlGaN/GaN HFET’s on SiC substrates,” IEEE Electron Device Lett., vol. 18, pp. 492-494, 1997.
[109] T. H. Tsai, H. I. Chen, K. W. Lin, C. W. Hung, C. H. Hsu, L. Y. Chen, K. Y. Chu, and W. C. Liu, "Comprehensive study on hydrogen sensing properties of a Pd–AlGaN-based Schottky diode," Int. J. Hydrogen Energ., vol. 33, pp. 2986-2992, 2008.
[110] C. S. Hsu, H. I. Chen, P. C. Chou, J. K. Liou, C. C. Chen, C. F. Chang, and W. C. Liu, " Hydrogen-sensing properties of a Pd/AlGaN/GaN-based field-effect transistor under a nitrogen ambience," IEEE SENS. J., vol. 13, pp. 1787-1793, 2013.
[111] P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M. Glavmo, and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases,” Sens. Actuators B, vol. 43, pp. 52-59, 1997.
[112] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981.
[113] E. L. Murphy, and R. H. Good, "Thermionic Emission, Field Emission, and the Transition Region," Phys. Rev., vol. 102, pp. 1464-1473, 1956.
[114] A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, “Schottky barrier properties of various metals on n-type GaN,” Semiconductor science and technology, vol. 11, pp. 1464-1467, 1996.
[115] M. Ali, V. Cimalla, V. Lebedev, V. Tilak, P. M. Sandvik, D. W. Merfeld, and O. Ambacher, "A study of hydrogen sensing performance of Pt–GaN Schottky diodes," IEEE Sens J., vol. 6, pp. 1115-1119, 2006.
[116] C. W. Hung, H. L. Lin, Y. Y. Tsai, P. H. Lai, S. I. Fu, H. I. Chen, and W. C. Liu, “New field-effect resistive Pd/oxide/AlGaAs hydrogen sensor based on pseudomorphic high electron mobility transistor,” Jpn. J. Appl. Phys., vol. 45, pp. L780-L782, 2006.
[117] S. Y. Chiu, H. W. Huang, T. H. Huang, K. C. Liang, K. P. Liu, J. H. Tsai, and W. S. Lour, "Comprehensive study of Pd/GaN metal–semiconductor–metal hydrogen sensors with symmetrically bi-directional sensing performance," Sens. Actuator B-Chen., vol. 138, pp. 422-427, 2009.
[118] T. H. Tsai, J. R. Huang, K. W. Lin, W. C. Hsu, H. I. Chen, and W. C. Liu, "Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode," Sens. Actuators B, vol. 129, pp. 292-302, 2008.
[119] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A. M. Hor ,and H. Aziz, “Surface electronic structure of plasma-treated indium tin oxides,” Appl. Phys. Lett., vol. 78, pp. 2595-2597, 2001.
[120] H. Kim, N. M. Park, J. S. Jang, S. J. Park, and H. Hwang, “Surface electronic structure of plasma-treated indium tin oxides,” Electrochemical and Solid-State Letters, vol.4, G104-106, 2001.
[121] L. G. Petersson, H. M. Dannetunn, and I. Lundström, “The water-forming reaction on palladium,” Surf. Sci., vol. 163, pp. 77-100, 1985.
[122] L. G. Petersson, H. M. Dannetunn, and I. Lundström, “Water production on palladium in hydrogen-oxygen atmospheres,” Surf. Sci., vol. 163, pp. 273-284, 1985.
[123] C. S. Rout, G. U. Kulkarni, and C. N. R. Rao, “Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides,” J. Phys. D-Appl. Phys., vol. 40, pp. 2777-2782, 2007.
[124] J. R. Huang, W. C. Hsu, H. I. Chen, and W. C. Liu, “Comparative study of hydrogen sensing characteristics of a Pd/GaN Schottky diodes,” Sens Actuators B, vol. 123, pp. 1040-1048, 2007.
[125] T. H. Tsai, H. I. Chen, T. Y. Chen, L. Y. Chen, Y. J. Liu, C. C. Huang, K. S. Hsu, and W. C. Liu, “Hydrogen sensing properties of a Pd/oxide/InAlAs metamorphic- based transistor,” Int. J. Hydrog. Energy, vol. 35, pp. 3903-3907, 2010.
[126] G. Chen, A. H. W. Choi, P. T. Lai, W. M. Tang, “Schottky-diode hydrogen sensor based on InGaN/GaN multiple quantum wells,” Journal of Vacuum Science & Technology B, vol. 32, pp. 011212, 2014.
[127] F. K. Yam and Z. Hassan, “Schottky diode based on porous GaN for hydrogen gas sensing application,” Applied Surface Science, vol. 253, pp. 9525-9528, 2007.
[128] S. Y. Chiu, J. H. Tsai, H. W. Huang, K. C. Liang, T. H. Huang, K. P. Liu, T. M. Tsai, K. Y. Hsu, and W. S. Lour, “Hydrogen sensors with double dipole layers using a Pd-mixture-Pd triple-layer sensing structure,” Sensors and Actuators B-Chemical, vol. 141, pp. 532-537, 2009.
[129] T. J. Anderson, H. T. Wang, B. S. Kang, F. Ren, S. J. Pearton, A. Osinsky, A. Dabiran, and P. P. Chow, “Effect of bias voltage polarity on hydrogen sensing with AlGaN/GaN Schottky diodes,” Applied Surface Science, vol. 255, pp. 2524-2526, 2008.
[130] X. H. Wang, X. L. Wang, C. Feng, H. L. Xiao, C. B. Yang, J. X. Wang, B. Z. Wang, J. X. Ran, and C. M. Wang, “Hydrogen sensors based on AlGaN/AIN/GaN Schottky diodes,” Chinese Physics Letters, vol. 25, pp. 266-269, 2008.
[131] N. Yamazoe, “Toward innovations of gas sensor technology,” Sens. Actuators B, vol. 108, pp. 2-14, 2005.
[132] S. Lee, Y. Lee, C. Shim, N. Choi, B. Joo, K. Song, J. Huh, and D. Lee, “Three electrodes gas sensor based on ITO thin film,” Sens. Actuators B-Chem., vol. 93(1-3), pp. 31-35, 2003.
[133] H. Y. Nie and Y. Nannichi, “Pd-on-GaAs Schottky contact: Its barrier height and response to hydrogen,” Jpn. J. Appl. Phys., vol. 30, pp. 906-913, 1991.
[134] A. Gumus, A. Turut, and N. Yalcin, “Temperature dependent barrier characteristics of CrNiCo alloy Schottky contacts on n-type molecular-beam epitaxy GaAs,” Journal of applied physics, vol. 91, pp. 245-250, 2002.
[135] C. S. Rout, M. Hegde, A. Govindaraj, and C. N. R. Rao, “Ammonia sensors based on metal oxide nanostructures,” Nanotechnology, vol. 18, pp. 205504(9pp), 2007.
[136] Y. Shimizu, A. Jono, T. Hyodo, and M. Egashira, “Preparation of large mesoporous SnO2 power for gas sensor application,” Sens. Actuators B-Chem., vol. 108, pp. 56-61, 2005.
[137] P. Tobias, A. Baranzahi, A. L. Spetz, O. Kordina, E. Janzen, and I. Lundstrom “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol. 18, pp. 287-289, 1997.
[138] S. Y. Cheng, “A hydrogen sensitive Pd/GaAs Schottky diode sensor,” Mater. Chem. Phys., vol. 78, pp. 525-528, 2003.
[139] W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
[140] S. Y. Chiu, J. H. Tsai, H.W. Huang, K. C. Liang, T. M. Tsai, K. Y. Hsu, and W. S. Lour, “Integrated hydrogen-sensing amplifier with GaAs Schottkytype diode and InGaP-GaAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 30, pp. 898–900, 2009.
[141] L. H. Huang, P. Jiang, D. Wang, Y. F. Luo, M. F. Li, H. Lee, and R. A. Gerhardt, “A novel paper-based flexible ammonia gas sensor via silver and SWNT-PABS inkjet printing,” Sensors and Actuators B-Chemical, vol. 197, pp. 308-313, 2014.
[142] J. H. Xu, N. Q. Wu, C. B. Jiang, M. H. Zhao, J. Li, Y. G. Wei, and S. X. Mao, “Impedance characterization of ZnO nanobett/Pd Schottky contacts in ammonia,” Small, vol. 2, pp. 1458-1461, 2006.
[143] C. S. Hsu, H. I. Chen, C. W. Lin, T. Y. Chen, C. C. Huang, P. C. Chou, and W. C. Liu, “Ammonia Gas Sensing Performance of an Indium Tin Oxide (ITO) Based Device with an Underlying Au-Nanodot Layer,” Journal of The Electrochemical Society, vol. 160, pp. B17-B22, 2013.