| 研究生: |
張哲甄 Chang, Che-Chen |
|---|---|
| 論文名稱: |
具乾溼變色功能之鹼激發膠結材配比設計與性能評估 Mix Design and Performance Evaluation of Alkali-activated Binders with the Characteristic of Color-Changing under Wet and Dry Environments |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 鹼激發膠結材 、電弧爐還原碴 、廢玻璃粉末 、酚酞 、百里酚酞 、乾溼變色功能 |
| 外文關鍵詞: | alkali-activated binders, electric arc furnace reducing slag, waste glass powder, phenolphthalein, thymolphthalein, color-changing mechanism |
| 相關次數: | 點閱:16 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在開發具乾濕變色功能之鹼激發膠結材料,並評估其於環保建材及感測應用上的潛力。選用電弧爐還原碴與廢玻璃粉作為主要原料,分別摻入酚酞與百里酚酞兩種酸鹼指示劑,製備具有乾濕變色能力之鹼激發膠結材,探討其於不同鹼活化劑濃度與還原碴添加量條件下,各項材料性質之變化,並評估其色彩穩定性與耐久性,期望建立一套具乾濕感測功能之永續建材設計準則。本研究主要區分為三個階段,第一階段進行原料預先處理與其基本物理性質量測,第二階段比較不同配比設計條件下,所製成試體之硬固膠結材pH值、吸水率、色差以及抗壓強度之差異,進而篩選出最佳配比設計組合,第三階段則針對添加不同指示劑的膠結材試體,進行反覆變色試驗與力學性能量測及分析。結果顯示,添加酚酞之鹼激發膠結材試體在鹼活化劑濃度為9%及11%、還原碴取代率50%條件下,不僅在乾濕變化過程中具有穩定且明顯的變色效果,亦呈現良好的抗壓強度與濕乾循環耐久性。相較之下,添加百里酚酞所製成試體之顏色辨識性較差,且色彩回復性不具規則性,顯示其應用潛力相對有限。整體而言,於適當配比條件所製成之鹼激發膠結材中添加酸鹼指示劑,除可有效賦予其乾濕變色功能,亦不影響原有膠結材之強度,展現良好應用可行性,如此,將有助於提升電弧爐還原碴與廢玻璃粉等廢棄材料之再利用循環價值,提升其於永續建材領域之應用潛力。
This research aims to develop the alkali-activated binders with the characteristic of wet-dry color-changing and evaluate the validity for their applications in construction and sensing engineering. Electric arc furnace reducing-slag and waste glass were used as raw materials, combined with phenolphthalein and thymolphthalein as pH indicators to enable visual responsiveness to moisture. The effects of different alkaline activators and reducing-slag replacement ratios on the properties of alkali-activated binders were investigated, focusing on the stability, reversibility and durability of wet-dry color-changing. The raw materials were first pretreated and their physical and chemical properties were then characterized. Next, specimens with different mix designs were made and evaluated in terms of pH, water absorption, color difference, and compressive strength, leading to the determination of optimal mix-design. Last, repeated color-change tests and compressive strength measurements were conducted to evaluate the performance of alkali-activated binders containing different fractions of pH indicators under reversible wet-dry conditions. Results showed that specimens containing phenolphthalein, under the conditions of 9% or 11% alkaline concentration and 50% reducing-slag replacement, exhibited stable and visible color-changing, while also maintaining good compressive strength and durability. In contrast, specimens containing thymolphthalein demonstrated weaker color visibility and irregular recovery patterns, limiting their application. Alkali-activated binders containing pH indicators effectively imparted reversible wet-dry color-change functionality without compromising mechanical performance. This research not only enhances the utilization of industrial by-products of reducing-slag and waste glass but also encourages the development of intelligent and sustainable building materials.
[1]邱揚真,「具潮濕乾燥變色功能之鹼激發玻璃膠結材」,碩士論文,國立成功大學土木工程研究所,2023。
[2]鍾雅欣,「具乾濕變色功能之鹼激發還原碴膠結材」,碩士論文,國立成功大學土木工程研究所,2024。
[3]A. O. Purdon, “The Action of Alkalis on Blast-Furnace Slag.,” J. Soc. Chem. Ind., vol. 59 no. 9, pp. 191–202, 1940.
[4]邱伃安,「鹼激發膠結材料反應機理之研究」,碩士論文,國立台灣科技大學營建工程研究所,2016。
[5]H. Zhou, X. Wu, Z. Xu, and M. Tang, “Kinetic study on hydration of alkali-activated slag,” Cem. Concr. Res., vol. 23, no. 6, pp. 1253–1258, 1993, doi: 10.1016/0008-8846(93)90062-E.
[6]S.-D. Wang, K. L. Scrivener, and P. L. Pratt, “Factors affecting the strength of alkali-activated slag,” Cem. Concr. Res., vol. 24, no. 6, pp. 1033–1043, 1994, doi: 10.1016/0008-8846(94)90026-4.
[7]“Production and Uses of Blast Furnace Slag in Japan,” 日本爐碴協會(Nippon Slag Association). [Online]. Available: https://www.slg.jp/e/statistics/index.html
[8]“Production and use of Blast Furnace slag (BFS) and Steel Furnace Slag (SFS) in 2018,”歐洲爐碴協會(Euroslag) Available:https://www.euroslag.com/research-library-downloads/downloads/
[9]「全國各縣市事業廢棄物產出及清理流向」,環境部資源循環署事業廢棄物申報及管理資訊系統. Available: https://waste.moenv.gov.tw/RWD/Statistics/?page=Year1
[10]蔡文博、鄭大偉與黃兆龍,「鋼鐵爐碴之循環應用-電弧爐煉鋼還原碴再利用」,《土木水利》,第46卷,第5期,2019。doi: 10.6653/MoCICHE.201910_46(5).0005。
[11]H. Xu, J. S. J. Van Deventer, and G. C. Lukey, “Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures,” Ind. Eng. Chem. Res., vol. 40, no. 17, pp. 3749–3756, Aug. 2001, doi: 10.1021/ie010042b.
[12]趙駿穎,「廢玻璃鹼激發膠結材之研究」,碩士論文,國立成功大學,2008。
[13]H. Xu and J. S. J. Van Deventer, “The geopolymerisation of alumino-silicate minerals,” Int. J. Miner. Process., vol. 59, no. 3, pp. 247–266, Jun. 2000, doi: 10.1016/S0301-7516(99)00074-5.
[14]T.-A. Chen, "Effects of Aging and Curing Processes on the Property of Alkali-Activated Glass Inorganic Binders," Ph.D. dissertation, Dept. of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
[15]黃忠信、林宓璇、陳冠豪與郭哲諺,「高溫高壓鹼激發玻璃營建材料與纖維加強板(第3年)」,國家科學及技術委員會補助專題研究計畫報告 MOST 108-2221-E-006-009-MY3, Aug. 110AD.
[16]張添晉與王愫懃,「廢玻璃與廢燈管資源回收循環」,財團法人中技社, Available: https://www.ctci.org.tw/
[17]「公告應回收廢物品及容器回收量」,環保署環境資料開放平臺。Available: https://data.moenv.gov.tw/dataset/detail/stat_p_133
[18]陳育聖,簡臣佑與許瑞紋,「廢玻璃再生粒料應用於營建工程之探討」
[19]內政部營建署,「廢玻璃再生粒料應用於級配粒料基底層之使用手冊」,2016。
[20]T. Young, “II. The Bakerian Lecture. On the theory of light and colours,” THE ROYAL SOCITEY. Available:https://royalsocietypublishing.org/doi/abs/10.1098/rstl.1802.0004
[21]W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc., vol. 30, no. 4, pp. 141–164, Mar. 1929, doi: 10.1088/1475-4878/30/4/301.
[22]J. Guild, “The colorimetric properties of the spectrum,” Philosophical Transactions of the Royal Society of London, vol. Series A, no. 230, pp. 149–187.
[23]「光譜儀實驗」,東海大學光電實驗室。 Available:https://physcourse.thu.edu.tw/st109/%E5%AF%A6%E9%A9%97%E9%A0%85%E7%9B%AE/5%E3%80%91%E5%85%89%E8%AD%9C%E5%84%80%E5%AF%A6%E9%A9%97/cie-1931/
[24]D. L. MacAdam, “Visual Sensitivities to Color Differences in Daylight*,” J. Opt. Soc. Am., vol. 32, no. 5, p. 247, May 1942, doi: 10.1364/JOSA.32.000247.
[25]Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates, ASTM D2244-22. doi: 10.1520/D2244-22.
[26]E. Davies, “Could a pH greater than 14 exist?,” BBC Science Focus. Available:https://www.sciencefocus.com/science/could-a-ph-greater-than-14-exist
[27]“pH值.” Accessed: Feb. 18, 2025. Available:https://zh.wikipedia.org/wiki/PH%E5%80%BC?utm_source=chatgpt.com
[28]「水中pH值和導電度測試的演進」, Hach Taiwan. Available:https://www.hach.com.tw/mod/tech/index.php?REQUEST_ID=d0fd4f0548a6a3bd0e30601ae554704f82549c1eca50ccf9340f8a4b72841300&pn=3#
[29]黃兆龍,「混凝土性質與行為」,詹式書局,2003。
[30]蔡柏棋與徐登科,「台灣常用爐石與工程應用實務」,《技師報》,第938卷,2014。 Available:http://www.twce.org.tw/modules/freecontent/include.php?fname=twce/paper/938/7-1.htm
[31]T. Liu, “Conjugation and Colors,” Materials Connect A conversation engaging the global materials research community. Accessed: Apr. 10, 2025. Available: https://materials.typepad.com/materialsconnect/2019/10/conjugation-and-colors.html
[32]B. C. K. Ly, E. B. Dyer, J. L. Feig, A. L. Chien, and S. Del Bino, “Research Techniques Made Simple: Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement,” J. Invest. Dermatol., vol. 140, no. 1, pp. 3-12.e1, Jan. 2020, doi: 10.1016/j.jid.2019.11.003.
[33]賴琇瑩,「鹼激發廢玻璃膠結材之常溫配比研究」,碩士論文,國立成功大學,2010。
[34]水硬性水泥密度試驗法,CNS 11272,1985。
[35]Stardard Test Methods for pH of Water, ASTM D1293-18, 2018. doi: 10.1520/D1293-18.
[36]A. M. Kakade, “MEASURING CONCRETE SURFACE PH— A PROPOSED TEST METHOD”.
[37]Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM C642 − 13. doi: 10.1520/C0642-13.
[38]黃庄含、林于軒與周冠廷,「鹼激發矽鈣基膠結材料之力學與體積穩定性質初探」,國立宜蘭大學土木工程學系,2020。
[39]Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM C 109, 2002.
[40]Textiles — Tests for colour fastness — Part B02: Colour fastness to artificial light: Xenon arc fading lamp test, ISO 105-B02, 2014. Available:https://standards.iteh.ai/catalog/standards/sist/14a57815-e3c2-44bf-aac3-88f289412249/iso-105-b02-2014
[41]Paints and varnishes – Coating materials and coating systems for exterior wood – Part 6: Exposure of wood coatings to artificial weathering using fluorescent UV lamps and water, EN 927-6:2019. Available:https://cdn.standards.iteh.ai/samples/60139/efea60960c8e4d98afe524cb7bbc6a4e/SIST-EN-927-6-2019.pdf