| 研究生: |
楊雅晴 Yang, Ya-Ching |
|---|---|
| 論文名稱: |
螺栓組合件之疲勞分析 Fatigue Analysis of Bolted Joint |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 螺栓組合件 、應力疲勞分析 、有限元素分析 |
| 外文關鍵詞: | bolted joint, fatigue analysis, finite element analysis |
| 相關次數: | 點閱:69 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
軌道工程中藉由螺栓來連結軌道與電路端子,產生電路迴路並確保路段之通車安全,而列車行駛時輪軌之間可能的接觸碰撞,間接使螺栓組合件產生反覆的應力變化,進而產生疲勞破壞的風險。為了適當評估螺栓之疲勞壽命,本文使用ABAQUS有限元素法軟體,建立兩種電路螺栓組合件之三維數值分析模型,並考慮螺栓與其他零件之彈塑性力學性質,將組合件分別以不同扭矩值鎖固後,於軌道面施加反覆的橫移量,比較兩種組合件螺栓在前斷面缺口處、中斷面光滑處、後斷面螺紋凹槽處的應力分布情形與應力集中效應,了解特定點之應力幅度變化,再藉由S-N曲線來評估螺栓疲勞破壞的可能性。由分析結果可得知,若組合件之零件間的初始空隙大小分布不一,會使螺栓在鎖固後產生撓曲變形,並使其斷面應力分布不均,容易產生較大的局部應力值;當軌道面有較大橫移量時,發生最大應力位置有轉移現象。在較低的鎖固扭矩情形下,夾緊件之間容易受軌道面橫移量作用而產生無法回復的空隙,並產生較大的應力幅度值,導致其完全反覆應力幅度可能接近或超過其疲勞極限值。在較高的鎖固扭矩情形下,雖然能提升夾緊件之間的貼合程度,但在應力集中效應較大處,材料塑性變形程度較大。
若螺栓組合件之幾何配置對稱且良好貼合,能避免鎖固後螺栓內部應力分布不均,而合理的鎖固扭矩值,會使夾緊件之間較不易因軌面橫移量鬆動或產生過大應力幅度值,能適當避免疲勞破壞的風險與過多的塑性變形。
Bolted joints are widely used in mechanical and civil engineering applications. When bolted joints suffer from vibration or cyclic loading, they may finally damage due to fatigue failure. This study built the three-dimensional finite element models for two bolted joints to carry out the numerical simulations of the bolted joints during tightening and under cyclic loadings. The elastic-plastic material properties were considered into the simulation, so that the concentrated stress near the thread and bolt head can be computed accurately. The result shows that high tightening torque allows the jointed parts to contact each other well even at cyclic loadings, so that the stress amplitude can be lower than the fatigue limit of stainless steel and the fatigue life of the bolt exceeds 106 cycles. However, when the tightening torque reaches 90N-m, a large portion of the bolt at the thread yields, hence the risk of ductile failure increases. To reduce bolt failure and increase its fatigue life, the appropriate tightening torque based on our simulations is suggested. It is noted that conformal contact between the jointed parts is the key to more uniform stress distribution and less stress amplitude of the bolted joint.
[1] Shoberg, R. S., Engineering Fundamentals of Threaded Fastener Design and Analysis, RS Technologies, a Division of PCB Load & Torque, Inc., 2010
[2] Vangipuram, R., Valasin, A. and Squires, R., Torque Angle Signature Analysis of Joints with Thread Rolling Screws and Unthreaded Weld Nuts, SAE Paper, No.2007-01-1665, 2007.
[3] Mortensen, J., Friction Analysis of Bolts, Aalborg University, 2013.
[4] Kellermann, R., Klein, H-C., Investigations on the influence of friction on the clamp force and the tightening torque of bolted joints, Konstruktion, 2, 1955.
[5] Motosh, N., Development of design charts for bolts preloaded up to the plastic range,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, vol. 98, no. 3, pp. 849–851, 1976.
[6] Budynas, R. G., Nisbett, J. K., Shigley’s Mechanical Engineering Design, 8th, McGraw-Hill, 2008.
[7] 林昀蓁,螺栓組合件之鎖固模擬,國立成功大學碩士論文,2022。
[8] ISO 16047, Fasteners-Torque/clamp force testing, 2005.
[9] Dowling, N. E., Dowling mechanical behavior of materials, prentice hall, 1993.
[10] Goodman, J., Mechanics Applied to Engineering, Longmans, Green and Co., 1914
[11] Morrow, J., Fatigue properties of metals, Soc. of Automotive Engineers, Warrendale, Pub. No. AE-4, Section 3.2., 1-132., 1968.
[12] Ramberg W, Osgood WR., Determination of stress–strain curves by three parameters., NACA Technical note no. 503, 1941.
[13] Kalpakjian, S., Schmid, S., Manufacturing Engineering and Technology 6th edition, Pearson Education, ch2, 2009.
[14] Hosford, W. F., Mechanical Behavior of Materials 2nd, Cambridge University Press, ch4, 2009.
[15] Turton, R. J., The Physics of Solids, Oxford University Press, 2000.
[16] ISO 4014, Hexagon head bolts—Product grades A and B, 2011.
[17] ISO 4032, Hexagon nuts,style 1—Product grades A and B, 1999.
[18] ISO 262, general purpose metric screw threads — Selected sizes for screws, bolts and nuts, 1998.
[19] ISO 68-1,general purpose screw threads—Basic profile—Metric screw threads,1998.
[20] Hill, H. N., Determination of stress–strain relations from “offset” yield strength values, Technical Note No. 927, 1944.
[21] Rasmussen, K. J. R., Full-range stress–strain curves for stainless steel alloys, J. Constr. Steel Res. 59 (1), P.47-61, 2003.
[22] Wang, H., Hu, Y., Wang, X. Q., Tao, Z., Tang, S. L., Pang, X. P., Chen, Y. F., Behaviour of austenitic stainless steel bolts at elevated temperatures, Engineering Structures, Volume 235, 2021.
[23] 陳鴻麟,輪軌磨耗分析與對策探討,臺鐵資料季刊,349期,頁1-26,2014。
[24] Wu, Q., Wang, B., Cole, C., Spiryagin, M., Implications of Lateral Coupler Forces for Rail Vehicle Curving Resistance, Journal of Computational and Nonlinear Dynamics, 16(3), 2021.
校內:2028-07-31公開