| 研究生: |
李文峰 Lee, Wen-Feng |
|---|---|
| 論文名稱: |
以MEA溶液去除煙道氣中二氧化碳之研究 A study using MEA removes carbon dioxide in fuel gas |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 乙醇胺 、二氧化碳 、吸收速率 |
| 外文關鍵詞: | Carbon dioxice, Monoethanoamine, Absorption rate |
| 相關次數: | 點閱:96 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大氣中二氧化碳之增加主要係由化石燃料大量消耗之結果,二氧化碳會吸收由地球表面反射之紅外線而造成溫度上升、海平面上升等氣候變遷而稱之為”溫室效應”。由氣候綱要公約及京都議定書之協定均可瞭解:此時已屆研究及發展各項減少溫室效應氣體技術之際,而如何降低二氧化碳之最大排放源產生之二氧化碳更為首要之務。
本研究將建立一套去除煙道氣中二氧化碳系統之攪拌槽型式實驗設備,在反應槽氣液相攪拌轉速分別為235 rpm及200 rpm下,以MEA(aq)、DEA(aq)、MDEA(aq)、NH3(aq)、NaOH(aq)及混合醇胺溶液為吸收劑測定各種操作狀況下之吸收速率,以瞭解其較佳之吸收劑及較適之操作條件,並求得此系統的各項反應動力數據。
本研究成果如下:
1.以MEA吸收CO2:
在溫度50 ℃,進氣CO2濃度15% (V/V),進氣流量2~12 L/min,吸收劑MEA=10~50% (W/W)情況下。結果顯示當氣體流速增加,其吸收速率會隨之增加,但隨著氣體流速增加其改變吸收速率的量會越少。而在不同濃度的吸收劑下,當吸收劑的濃度越高,其吸收速率越快,然在MEA=30%時的吸收速率為最大。
在溫度50 ℃,氣體流量12 L/min,進氣CO2濃度5~20%(V/V) ,吸收劑MEA=10~50% (W/W)的情況下。結果顯示當進氣CO2濃度越高其吸收速率越快,而吸收劑的情形跟上述雷同。
2.改變溫度對MEA吸收CO2的影響:
在溫度為30~70 ℃,氣體流量12 L/min,進氣CO2濃度15%,吸收劑為MEA=10~50% (W/W)情形下。結果顯示當溫度越高其吸收速率會越高,而不同濃度的MEA其情形跟上述雷同。
3.加入NOx、SO2對MEA吸收CO2之影響:
在溫度50℃,氣體流量12 L/min,進氣CO2濃度15%,加入NOx = 300~800 ppm或SO2 = 500~1500 ppm或同時加入NOx=500 ppm + SO2=1000 ppm,吸收劑為MEA=10~50% (W/W)的情形下。其結果顯示加入NOx及SO2後,NOx及SO2的存在會對MEA吸收CO2有降低的作用。
4.比較混合醇胺同時吸收CO2+NOx+SO2之關係:
在溫度50℃,氣體流量12 L/min,進氣CO2濃度15% (V/V) ,NOx = 500 ppm,SO2 = 1000 ppm的情形下,吸收劑為MEA/NH3= 30/1、30/3,MEA/DEA=30/10、30/20,MEA/MDEA=30/5、30/10。其結果顯示,加入NH3有助於吸收速率的增加,同時又抵抗了NOx、SO2對MEA吸收CO2不良的影響,加入越多的NH3吸收CO2效果越好。加入DEA時對MEA吸收CO2有不良的影響,加入越多其反效果越大。加入MDEA時對MEA吸收CO2有不良的影響,加入越多其反效果越大。
5.比較不同吸收劑吸收CO2之關係:
在溫度50℃,氣體流量12 L/min,進氣CO2濃度15% (V/V) 情行下,吸收劑為NH3=0.57~2.51M、NaOH=1~3M、MEA=1.64~4.91M、DEA=0.98~2.93M、 MDEA=0.87~2.62M。其結果為吸收速率的快慢分別為:NH3>MEA>NaOH>DEA>MDEA。
6.由不同吸收劑濃度之MEA(10~50%)吸收不同進流濃度之CO2(5~20%),中可以得到下面之反應速率關係式。在不同溫度(30~70℃)的操作條件下,我們可以得到活化能、碰撞因子反應速率常速為:
Ea=32.26 Kj/mol A=2.573*105
7.本研究根據SAS軟體回歸求得一經驗式
而各參數對吸收速率之影響程度依序為MEA濃度、二氧化碳進氣濃度、操作溫度、Flow rate、NOx進氣濃度及SO2進氣濃度。
The increase in atmospheric carbon dioxide has primarily resulted from the consumption of fossil fuels for energy. The atmospheric CO2 is transparent to visible light but absorbs infrared radiation returning from the earth. Thus, the atmospheric CO2 may alter the radioactive balance of the earth and raise the global temperature. This so-called “greenhouse effect”could dramatically cause global climatic and environmental changes in precipitation, storm patterns, and increases in sea level.Therefore, it is the time to research and develop technologies for reducing CO2 emissions from energy production system that is the largest source of CO2 emissions.
This study was set up a bench-scale agitated vessel reactor system to removal CO2 in the simulated fuel gas. In reactor, the stir turning of gas phase is 235 rpm and liquid phase is 200rpm. To measure the absorption rate of CO2 at various operating conditions; followed by using MEA(aq); DEA(aq); MDEA(aq); NH3(aq); NaOH(aq) and mixing amine as the additive and absorbent, respectively, to determine the chemical kinetics data.
The result of this study shows the following:
1.The effect of MEA concentration on CO2 absorption rate.
It is conducted condition: temperature 50℃, CO2 concentration 15%(V/V), gas flow rate 2~12 L/min and absorbent MEA =10~50% (w/w). The result shows that the absorption rate goes up by increasing the gas flow rate but the amount of changing absorption rate decrease with increasing the gas flow rate. In different concentration of absorbent condition, the absorption rate goes up by increasing the concentration of absorbent, however, the absorption rate is the fast in MEA=30%.
It is conducted condition: temperature 50℃, CO2 concentration 5~15%(V/V), gas flow rate 12 L/min and absorbent MEA =10~50% (w/w). The result shows that the more higher CO2 inert concentration the more fast absorption rate, and the condition of absorbent is alike the above-mentioned.
2.The effect of operating temperature on CO2 absorption rate.
It is conducted condition: temperature 30~70℃, CO2 concentration 15%(V/V), gas flow rate 12 L/min and absorbent MEA=10~50% (w/w). The result shows that the absorption rate goes up by increasing temperature, and the condition of absorbent is alike the above-mentioned.
3.The effect of NOx and SO2 on CO2 absorption rate.
It is conducted condition: temperature 50℃, CO2 concentration 15%(V/V), gas flow rate 12 L/min, entering NOx=300~800 ppm or SO2=500~1500 ppm or NOx =500 ppm + SO2=1000 ppm and absorbent MEA =10~50% (w/w). The result shows that the absorption rate reduces by entering NOx and SO2.
4.The effect of additives CO2 absorption rate
It is conducted condition: temperature 50℃, CO2 concentration 15%(V/V), gas flow rate 12 L/min, NOx=500 ppm, SO2=10000 ppm and absorbent MEA/NH3 = 30/1, 30/3, MEA/DEA = 30/10, 30/20, MEA/MDEA = 30/5, 30/10. The result shows that entering NH3 can help to increase absorption rate and compete to NOx, SO2 bad affecting for MEA absorb CO2 and the absorption rate increase with increasing NH3 concentration. When liquid was added with DEA or MDEA, it has a bad affecting for MEA absorbing CO2, and the more concentration the bad absorption rate.
5.The effect of absorbent type on CO2 absorption rate.
It is conducted condition: temperature 50℃, CO2 concentration 15%(V/V), gas flow rate 12 L/min, and absorbent concentration NH3=0.57~2.51M; NaOH=1~3M; MEA=1.64~4.91M; DEA=0.98~2.93M; MDEA=0.87~2.62M. The result shows that the absorption rate is NH3>MEA>NaOH>DEA>MDEA.
6.We get the reaction kinetics equation form difference absorbent concentration (MEA=10~50%) absorb difference CO2 concentration (CO2=5~20%).
In difference operating temperature (30~50℃), we can get active energy , factor of colliding and reaction constant equation.
Ea=32.26 Kj/mol A=2.573*105
7.According to the experimental data, we get an regression equation by using the computer program SAS:The sequence of the effect by these factors is MEA concentration, CO2 inert concentration, operating temperature, flow rate, NOx inert concentration and SO2 inert concentration.
Paul, J. and Pradier, C. M., ”Carbon Dioxide Chemistry: Environmental Issues”, The Royal Society of Chemistry, Cambridge, 1994.
C. David Cooper, F. C. Alley, ”Air Pollution Control: A Design Approach”,p 5-12, 1996.
Noel De Nevers, ”Air Pollution Control Engineering”, p 517-542, 1998.
Kimura, N., Omata, K., Kiga, T., Takano, S. and Shikisima, S., ” Characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery”, Energy Convers. Mgmt. 36, 805, 1995.
Mackenzie L., Davis and David A., Cornwell, ” Introduction to Environmental Engineering”, p461-550, 1999.
Shepherd, W. D., “Energy Studies”,World Scientific Publishing Co. Pte. Ltd, 1998.
Kawa, Y., ”The role of CO2 removal and disposal”, Energy Convers. Mgmt. 36, p375 , 1995.
Teramoto, M.,Nakatani, R., Huang, Q. and Watari, T., ”Facilitated Transport of CO2 Through Supported Liquid Membranes of various Amine Solutions- Effects of Rate and Equilibrium of Reaction between CO2 and Amine”, J. Chem. Eng of Japan 30, p328-335, 1997.
Xu, S., Otto, F. D. and Mather, A. E., ”Physical properties of aqueous AMP solutions”, J. chem. Eng Data p36,71-75, 1991.
Blauwhoff, P. M. M., Versteeg, G. F. and van Swaaij, W. P. M.,” A study on the reaction between CO2 and alkanolamines in aqueous solution”, Chem. Eng. Sci. 38, p1411-1429, 1983.
Crooks, J. E. and Donnellan, J. P., ”Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution”, J. chem. Soc, Perkin Trans. II, p331-333, 1989.
Danckwerts. P. V. and Sharma, M. M., ”Absorption of carbon dioxide into solutions of alkalis and amines (with some notes on hydrogen sulphide and carbonyl sulphide) ”, Chem. Engr. 10, CE 244-288, 1966.
Danckwerts. P. V., ” The reaction of CO2 with ethanolamines”, Chem. Eng. Sci. 34, p443-446, 1979.
Hikita, H., Asai, S., Ishikawa, H. and Honda, M., ” The kinetics of reactions of carbon dioxide with monoethanola nine. Diethanolamine and triethanolamine by a rapid mixing method”, Chem. Eng. J. 13, p7-12, 1977.
Roberts, D, and Danckwerts, P. V., ” Kinetics of CO2 absorption in alkaline sloutions-1. Transient absorption rates and catalysis by arsenite”, Chem. Eng. Sci. 17, p961-969, 1961.
Bai H. and Yeh An Chin,”Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions”, The Science of Total Environment, 228, p121-133, 1999.
Bai H. and Yeh An Chin,”Removal of CO2 greenhouse gas by Ammonia Scrubbing”, Industrial and Engineering Chemistry Research, 36, p2490-2493, 1997.
Jiun-Jie Ko, Meng-Hui Li, ” Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine + water”, Chemical Engineering Science 55, p4138-4147, 2000
Sheng H. Lin, Ching T. Shyu, ” Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column”, Waste Management 19, p255-262, 1999
Laddha, S. S. and Danckwerts, P. V., ” Reaction of CO2 with ethanolamines: kinetics from gas-absorption”, Chem. Eng. Sci, 36, p479-482, 1981.
Littel, R. J., Versteeg, G. F. and van Swaaij, W. P. M.,“Kinetics of CO2 with primary and secondary amines in aqueous solutions -I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines”, Chem. Eng. Sci., 47, p2027-2035, 1992.
Siggia, S., Hanna, J. G. and Kervenski, I. R., “Quantitative analysis of mixtures of primary, secondary, and tertiary aromatic amines”, Analyt. Chem., 12, p1295-1297, 1950.
Versteeg, G. F. and van Swaaij, W. P. M, ”Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions”, J. chem. Eng. Data 33, p29-34, 1988b.
Haimour, N., Bidarian, A. and Sandall, O. C.,” Kinetics of the reaction between carbon dioxide and methyldiethanolamine”, Chem. Eng. Sci., 42, p1393-1398, 1987.
Little, R. J., van Swaaij, W. P. M. and Versteeg, G. F, ” The kinetics of carbon dioxide with tertiary amines in aqueous solution”, A.I.Ch.E. J. 36, p1633-1640, 1990b.
Sartori, G., Ho, W. S., Savage, D. W., Chludzinski.G.R. and Wiechert. S., ”Sterically-hindered amines for acid-gas absorption Separation Purification Methods 16”, p171-200, 1987.
Say, G. R., Heinzelmann, F. J., Iyengar, J. N., Savage,D.W., Bisio, A. and Sartori, G., ” Treating acid and sour gas: A new hindered amine concept for simultaneous removal of CO2 and H2S from gases”, Chem. Eng. Prog. 10, p72-77, 1984.
Sharma, M. M., ” Kinetics of reactions of carbonyl sulphide and carbon dioxide with amines and catalysis by Bronsted bases of the hydrolysis of COS”, Trans. Faraday. Soc. 61, p681-688, 1965.
Teng, T.T. and Mather, A. E., ” Solubility of H2S, CO2 and their mixtures in an AMP solution”, Can. J. chem. Eng., p67,846-850, 1989.
Teng, T.T. and Mather, A. E., ” Solubility of CO2 in AMP solution”, J. chem. Eng. Data 35,p410-411, 1990.
Tontiwachwuthikul. P., Meisen. A. and Lim, C. J., ” Solubility of CO2 in 2-amino-2-methyl-1-propanol solutions”, J. chem. Eng. Data 36, p130-133, 1991.
Tontiwachwuthikul. P., Meisen. A. and Lim, C. J., ” CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column”,Chem. Eng. Sci. 47, p381-390, 1992.
Erga. O. and Lidal. H., ” Equilibrium model for CO2 absorption in an aqueous solution of 2-amino-2-methyl-1-propanol”, Chem. Eng. Technol., 14, p394-398, 1991.
Saha, A. K., Bandyopadhyay, S. S. and Biswas, A. K., ” Solubility and diffusivity of N2O and CO2 in aqueous solutions of 2-amino-2methl-1-propanol”, J. chem Eng. Data 38, 78-82, 1993.
Saha, A. K., Bandyopadhyay, S. S. and Biswas, A. K., ” Kinetics of CO2 into aqueous solutions of 2-amino-2methl-1-propanol”, Chem. Eng Sci 50, p3587-3598, 1995.
Li, M. H., and Lee, W. C., ” Solubility and Diffusivity of N2O and CO2 in (Diethanolamine + Methyldiethanolamine+ water) and in (Diethanolamine + 2-Amino-2-methyl-1-propanol+ water) ”, J. chem. Eng. Data 41, p551-556, 1996.
Li, M. H., and Chang, B. C., ” Solubilities of Carbon Dioxide in water+ monoethanolamine + 2-Amino-2-methyl-1-propanol”, J. chem, Eng. Data 39, p448-452, 1994.
Li, M. H., and Lai, M. D., ” Solubility and Diffusivity of N2O and CO2 in (monoethanolamine + Methyldiethanolamine+ water) and in (monoethanolamine + 2-Amino-2-methyl-1-propanol+ water) ”, J. chem. Eng. Data 40, p486-492, 1995.
Jimmy Xiao, Chih-Wei Li, Meng-Hui Li,” Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol + monoethanolamine” Chemical Engineering Science 55, p 161-175, 2000
Little, R. J., Versteeg, G. F. and van Swaaij, W. P. M, ” Solubility and diffusivity data for the absorption of COS, CO2 and N2O in amine solutions”, J. chem. Eng. Data (in press), 1991b.
Little, R. J., Versteeg, G. F. and van Swaaij, W. P. M., ” Kinetics of CO2 with primary and secondary amines in aqueous solutions-I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines”, Chem. Eng. Sci. 47, p2027-2035, 1992.
Versteeg, G. F. and van Swaaij, W. P. M., ” Solubility and diffusivity of acid gases (CO2, N2O) in aqueous alkanolamine solutions”, J. chem. Eng. Data 33, p29-34, 1988.
Anthony, L. H. and Robert, N. M., ” Mass Transfer-Fundamentals and Applications”, Pretice-Hall, Inc, 1985.
Harris, W. E. and Kratochvil B., ” An Introduction to Chemical Analysis”, CBS Inc, New York, 1981.
Bird, R. B., ”Transport Phenomena”, Wiley, New York, p495-518, 1960.
Welty, J. R. and Wicks, C. E. and Wilson, R. E., ”Fundamentals of Momentum, Heat, and Mass Transfer”, Wiley, New York, p471-507, 1960.
Rodriguez Sevilla, J. M., ” Absorption of SO2 Determination of mass tranfer coefficients in a continuous stirred-tank reactor”, International Chem. Eng., 33(1), p.85~91, 1993.
Tung-Chien Tsai, and Meng-Hui Li, ” Solubility of Nitrous Oxide in Alkanolamine Aqueous Solutions”, J. Chem. Eng. Data, 45, p341-347, 2000
Wang, Y. W., and Mather, A. E. ” Solubility of N2O in Alkanolamine and in Mixing Solvents”, Chem. Eng. J., 48, p31-40, 1992
Ralph H. Weiland, John C. Dingman, D. Benjamin Cronin, and Gregory J. Browning, ” Density and Viscosity of Some Partially Carbonated Aqueous Alkanolamine Solutions and Their Blends”, J. chem. Eng. Data 43, p378-382, 1998.
侯山林,「溫室效應問題之探討」,台灣經濟研究月刊,第14卷第8期,民國80年8月。
姜善鑫,「全球氣候變遷(上)」,環境教育季刊第十六期,p1-11,1993。
姜善鑫,「全球氣候變遷(下)」,環境教育季刊第十七期,p31-35,1993。
姜善鑫,「森林與氣候變遷」,環境教育季刊第三十期,p2-14,1998。
張耀仁,「造紙外的造福運動-因應CO2排放減量可行作法」,台灣經濟研究月刊,第22卷第6期,民國88年6月。
周嫦娥,「環境與經濟的夢魘」,台灣經濟研究月刊,第21卷第3期,民國87年3月。
潘守保,「以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究」,國立交通大學環工所碩士論文,民國87年6月,1998。
中華民國環科協會,「鋼鐵、塑化、水泥業對CO2排放減量之因應」講習會專輯,p.1-2,民國87年7月,1998。
柳中明,「全球氣候變遷對我國的衝擊」,環耕雜誌第七期,p52-59,1997
許振邦,「二氧化碳排放減量的衝擊與因應」,貿易週刊第1781期,民國87年2月11日。
陳詩叢、潘守保、葉安晉、白曛綾,「以混合醇胺溶液(MEA/AMP)去除二氧化碳氣體之填充式吸收塔設計」,國科會研究計畫NSC 88-2621-Z009-001,民國八十八年,1999。
李玉鈴,「台灣二氧化碳減量之因應對策與建議」,工業簡訊第二十八卷 一期,p22-42,1998。
邱崇銘,「以氨水溶液去除煙道氣中二氧化碳之反應動力研究」,成功大學環工所碩士論文,2000。
施育林,「在噴霧塔中以氨水溶液去除二氧化碳之研究」,成功大學環工所碩士論文,2001。
涂博維,「以亞氯酸鈉與氫氧化鈉在煙道氣中同時除硫除氮之反應動力研究」,國立成功大學環工所碩士論文,民國83年6月,1994。
李旂緯,「同時吸收二氧化硫與一氧化氮之研究」,中原大學化工所碩士論文」,民國76年7月。
廖彥智編譯,「有機化學」,高立出版,民國88年。