簡易檢索 / 詳目顯示

研究生: 蕭智遠
Hsiao, Zhih-Yuan
論文名稱: 廢鉭電容中有價金屬之資源再生研究
Recovery of Valuable Metals from Waste Tantalum Capacitors
指導教授: 陳偉聖
Chen, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 84
中文關鍵詞: 廢鉭電容選擇性浸漬氯化焙燒資源再生
外文關鍵詞: Tantalum capacitor, Nickel, Manganese, Silver, Recovery, Selective leaching, Chlorination, Tantalum
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對廢棄之插件式鉭電解電容進行資源再生之研究,將鉭電容中之有價金屬鉭、錳、鐵、鎳、銀資源進行再生,研究流程主要可以分為特性分析、前處理、選擇性浸漬、氯化焙燒與金屬產物析出五個部分,並使得最終之產物可以回到產業端進行運用。
    第一部分為鉭電容之特性分析,藉由儀器分析材料之物理組成與元素組成,並探討鉭電容內部之晶相組成,作為訂定後續實驗步驟之依據。
    第二部分為前處理,利用熱裂解與磁力分選將存在於環氧樹脂外層之二氧化矽去除並將鐵鎳質引線回收,以避免影響目標金屬之純化,並將電極體破碎後增加顆粒之表面積以提升後續選擇性浸漬之效率。
    第三部分為為選擇性浸漬,利用銀、鉭資源不溶於硫酸之特性,將錳先以硫酸浸出,將銀、鉭資源留在固相。接下來再利用硝酸浸漬分離銀、鉭資源,並探討浸漬藥劑濃度、液固比、浸漬時間與反應溫度之最佳參數,經過兩次選擇性浸漬後分別計算錳、銀、鉭之浸漬效率分別為99.3%、99.62%、0.08%。
    第四部分為氯化焙燒研究,針對含鉭浸漬渣進行純化,經TG/DTA分析富鉭浸漬渣與氯化鈉混合後之熱性質,並探討焙燒之最佳溫度與時間。藉由管型爐加熱樣品,而生成之五氯化鉭的沸點為247.4 °C,將在反應過程中揮發冷凝後加入乙醇,使其變為醇鹽沉澱,達成鉭資源之富集與純化。
    第五部分為金屬產物析出研究,利用化學沉澱法與高溫鍛燒法將錳離子與含鉭醇鹽轉為氧化物之形式回收,銀離子溶液則是藉由鋅粉進行置換反應,最終藉由儀器分析得到四氧化三錳、銀金屬與五氧化二鉭,其純度分別可達99.42%、98.32%與99.67%。

    Electronic products are ever growing in popularity, and tantalum capacitors are heavily used in small electronic products. Spent epoxy-coated solid electrolyte tantalum capacitors, containing about 22 wt.% of tantalum, 8 wt.% of manganese and nickel, and 1 wt.% of silver, were treated through selective leaching and chlorination to separate the valuable metals. Epoxy resin was removed through pre-treatment and wires were recycled through magnetic separation. In the selective part, The effects of acid type, acid concentration, liquid-solid ratio, and reaction time were investigated to dissolve the manganese and silver. Next, residues of selective leaching after washing and drying were heated with ferrous chloride to convert to pure TaCl5 and collected in ethanol. Finally, calcining Mn(OH)2 and alkoxide of Ta to obtain oxide products, and replacing silver with zinc powder.

    中文摘要 I Abstract II 致謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2-1 鉭電容特性 4 2-1-1 鉭電容簡介 4 2-1-2 鉭電容所含金屬資源之現況 6 2-2 廢棄物資源化技術理論基礎 10 2-2-1 前處理 10 2-2-2 濕法冶金與資源化技術 12 2-2-3 氯化冶金與資源化技術 14 2-3 鉭電容資源化技術文獻回顧 16 2-3-1 外層環氧樹脂、引線之去除 17 2-3-2 電極體之金屬分離與純化 19 2-4 鉭電容廢棄物金屬分離純化理論 21 2-4-1 浸漬溶出基礎理論 21 2-4-2 氯化焙燒基礎理論 25 2-4-3 金屬化合物析出 27 第三章 研究步驟與方法 28 3-1 實驗材料 28 3-1-1 實驗樣品 28 3-1-2 實驗藥品 29 3-2 研究架構 30 3-3 研究流程 31 3-3-1 鉭電容之特性分析 31 3-3-2 前處理 31 3-3-3 選擇性浸漬 32 3-3-4 氯化焙燒與鍛燒法純化鉭資源 33 3-3-5 金屬及其化合物析出 33 3-4 實驗設備與儀器 34 第四章 結果與討論 37 4-1 鉭電容之特性分析 37 4-1-1 鉭電容之物化組成 37 4-1-2 鉭電容之晶相分析 38 4-2 鉭電容之前處理 40 4-2-1 熱裂解 40 4-2-2 磁力分選 42 4-3 電極體粉末之浸漬溶出 44 4-3-1 電極體粉末錳資源浸漬 46 4-3-2 浸漬殘渣銀資源浸漬 50 4-3-3 浸漬動力學 53 4-3-4 浸漬溶出小結 59 4-4 氯化焙燒 60 4-4-1 氯化焙燒之熱性質 61 4-4-2 氯化焙燒之焙燒溫度 62 4-4-3 氯化焙燒之反應時間 63 4-4-4 氯化焙燒動力學 64 4-4-5 氯化焙燒小結 65 4-5 金屬及其化合物析出之研究探討 66 4-5-1 化學沉澱法 66 4-5-2 金屬氧化物鍛燒法 67 4-5-3 金屬氧化物產品特性分析 69 第五章 結論 73 5.1 結論 73 5.2 建議回收流程 75 參考文獻 76

    [1] E. Commission, "Critical raw materials for the EU:Report of the Ad-hoc working group on defining critical raw materials," Eurpoean Commission:BRussels, Belgium, 2010.
    [2] Tantalum-niobium International Study Center, "Bulletin No.184," January 2021.
    [3] J. Prymak, "Replacing MnO2 with conductive polymer in solid tantalum capacitor," KEMET Electronics Corp, pp. 169-173, 1999.
    [4] K. Andersson, K.reichert, and R. Wolf, "Tantalum and Tantalum Compounds," Ullmann's encyclopedia of industrial chemistry, 2000.
    [5] A. Agulyansky, "The Chemistry of Tantalum and Niobium Fluoride Compounds," Elsevier Seience, p. 408, 2005.
    [6] USGS, "Statistics and information on the worldwide supply of, demand for, and flow of the mineral commodities niobium (columbium) and tantalum," Niobium and Tantalum Statistics and Information, 2021.
    [7] V. T. Witusiewicz,A.A. Bonder, U. Hecht, J. Zollinger, V.M. Petyukh, O.S. Fomichov, V.M. Voblikov,and S. Rex, "Experimental study and thermodynamic re-assessment of the binary Al–Ta system," Intermetallics, vol. 18, pp. 92-106, 2010, doi: 10.1016/j.intermet.2009.06.015.
    [8] C. L. Yeh and H. J. Wang, "Formation of Ta–Al intermetallics by combustion synthesis involving Al-based thermite reactions," Journal of Alloys and Compounds, vol. 491, pp. 153–158, 2010.
    [9] I. Park, T. H. Okabe, and Y. Waseda, "Tantalum powder production by magnesiothermic reduction of TaCl5 through an electronically mediated reaction (EMR)," Journal of Alloys and Compounds, vol. 280, pp. 265-272, 1998.
    [10] K. Y. Park, H. J. Kim, and Y. J. Suh, "Preparation of tantalum nanopowders through hydrogen reduction of TaCl5 vapor," Powder Technology, vol. 172, pp. 144-148, 2007.
    [11] D. L. Zimo Zhou, "Mesenchymal stem cell-seeded porous tantalum-based biomaterial: A promising choice for promoting bone regeneration," Colloids and Surfaces B: Biointerfaces, vol. 215, p. 112491, 2022.
    [12] M. Agrawal, R. Singh, M. Ranitovic, Z. Kamberovic, C. Ekberg, and K. K. Singh, "Global market trends of tantalum and recycling methods from Waste Tantalum Capacitors: A review," Sustainable Materials and Technologies, vol. 29, p. e00323, 2021.
    [13] R. Burt, "Much Ado About Tantalum. Again," Journal of the Institute of Material (2016), Minerals and Metals, 2016.
    [14] P. Startton, "Outlook for the Global Tantalum Market," Presentation by Roskill mation Services at The 2nd International Tin & Tantalum (December 2013), pp. 1-40, 2013.
    [15] Juris Meija, Tyler B. Coplen, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Norman E. Holden, Johanna Irrgeher, Robert D. Loss, Thomas Walczyk, and Thomas Prohaska, "Atomic weights of the elements 2013(IUPAC Technical Report )," Pure Appl. Chem., vol. 88, no.3, pp. 265-291, 2016.
    [16] U. S. G. Survey, "Mineral Commodity Summaries 2019," 2019.
    [17] U. S. G. Survey, "Mineral Commodity Summaries 2020," 2020.
    [18] U. S. G. Survey, "Mineral Commodity Summaries 2021," 2021.
    [19] Juris Meija, Tyler B. Coplen, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Norman E. Holden, Johanna Irrgeher, Robert D. Loss, Thomas Walczyk, and Thomas Prohaska, "Atomic weights of the elements 2013 (IUPAC Technical Report) ," Pure Appl. Chem, vol. 88, no.3, pp.265-291, 2016.
    [20] William M. Haynes. “CRC Handbook of Chemistry and Physics, CRC Press, U.S., 14-17, 2016
    [21] Tomomi Hata. “Silver plating applications and technology trends.”, Journal of
    The Surface Finishing Society of Japan, 70(9), 441-445, 2019.
    [22] 魏壽昆, 冶金過程熱力學. 上海: 上海科學技術出版社, 1980.
    [23] J. Frenay and S. Feron, "Domestic battery recycling in western Europe," The Mincrals, Metals and Materials Society, vol. 2, pp. 639-647, 1990.
    [24] M. E. Schweers, J. C. Onuska, and R. K. Hancwald, "A pyrometallurgical process for recycling cadmium containing batteries," Proceedings of the HMC-South'92, New Orleans, pp. 333-335, 1992.
    [25] T. Anult, "SAB-NIFE Recycling concept for nickel-cadmium batteries: An industrialized and environmentally safe process," Proceedings of the oth Interational Cadmium Conference. Cadmium Association, pp. 161-163, 1990.
    [26] R. H. Hanewald, W. A. Munson, and D. L. Schweyer, "Processing EAF dusts and other nickel-chromium waste materials pyrometallurgically at INMETCO," Minerals and Metallurgical Processing, pp. 169-173, 1992.
    [27] G. Belardi, R. Lavecchia, F. Medici, and L. Piga, "Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries," Waste Management, vol. 32(10), pp. 1945-1951, 2012.
    [28] M. Hasegawa, R. Ueyama, Y. Kashiwaya, and T. Hirato, "Recovery of Zinc from used alkali-manganese dry cells," Joural of Sustainable Metallurgy, vol. 1(2), pp. 144-150, 2015.
    [29] M. Toita, T. Matsuoko, S. Kurozu, and T. Ishimori, "Treatment and resources recovery of used dry batteries," Sumitomo Jukikai Giho, vol. 108, pp. 6-10, 1988.
    [30] 南條道夫, "都市鉱山開発-包括的資源観による:リサイクルシステムの位置付け," 東北大學選鑛製鍊研究所彙報, vol. 43, pp. 239-251, 1988.
    [31] K. Mineta and T. H. Okabe, "Development of a recycling process for tantalum from capacitor scraps," Journal of Physics and Chemistry of Solids, vol. 66, no. 2-4, pp. 318-321, 2005.
    [32] W.-S. Chen, H.-J. Ho, and K.-Y. Lin, "Hydrometallurgical Process for Tantalum Recovery from Epoxy-Coated Solid Electrolyte Tantalum Capacitors," Materials, vol. 12(8), p. 1220, 2019.
    [33] B. Niu, Z. Chen, and Z. Xu, "Method for Recycling Tantalum from Waste Tantalum Capacitors by Chloride Metallurgy," ACS Sustainable Chemistry & Engineering, vol. 5, no. 2, pp. 1376-1381, 2017.
    [34] B. Niu, Z. Chen, and Z. Xu, "Recycling waste tantalum capacitors to synthesize high value-added Ta2O5 and polyaniline-decorated Ta2O5 photocatalyst by an integrated chlorination-sintering-chemisorption process," Journal of Cleaner Production, vol. 252, 2020.
    [35] B. Niu, Z. Chen, and Z. Xu, "An integrated and environmental-friendly technology for recovering valuable materials from waste tantalum capacitors," Journal of Cleaner Production, vol. 166, pp. 512-518, 2017.
    [36] 王勤, 譚翠麗, 陳豔紅, and 曾念, "廢舊但電容中回收鉭、銀、錳的方法," CN103194604B, 2014.
    [37] Longgong Xia, Xue Wei, Hongjun Wang, Fengchun Ye, Zhihong Liu, "Valuable metal recovery from waste tantalum capacitors via cryogenic crushing-alkaline calcination-leaching process, "Journal of Materials Research and Technology, vol. 16, pp. 1637-1646, 2022.
    [38] S. I. M. Sasaki, K. Nasu, A.T. Quitain, M. Goto, "Recovery of tantalum from capacitor with solvothermal treatment.", 6th International Symposium on Feedstock Recyeling of Polymeric Materials," Spain, pp. 147-148, 2011.
    [39] T. W. S. Katano, H. Nakagome, "Recovery of Tantalum Sintered Compact from Used Tantalum Condenser Using Steam Gasification with Sodium Hydroxide, " APCBEE Procedia, vol. 10, pp. 182-186, 2014.
    [40] Bo Niu, Zhenyang Chen, and Zhenming Xu, "Recovery of Tantalum from Waste Tantalum Capacitors by Supercritical Water Treatment, "ACS Sustainable Chemistry & Enfineering, vol. 5, pp. 4421-4428, 2017.
    [41] B. Niu, Z. Chen, and Z. Xu, "Application of pyrolysis to recycling organics from waste tantalum capacitors," J Hazard Mater, vol. 335, pp. 39-46, Aug 5 2017.
    [42] M. B. N. Vatistas, S. Arras, "The dismantling of the spent alkaline zinc manganese dioxide batteries and the recovery of the zinc from the anodic material," 101, vol. 182-187, 2001.
    [43] Y. C. Xiangping Chen, Tao Zhou, Depei Liu, Shaoyun Fan, "Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries," Waste Management, vol. 38 no.1, pp. 349-356, 2015.
    [44] M. H. Morcali, "Reductive atmospheric acid leaching of the spent alkaline batteries in H2SO4/Na2SO3 solutions," International Journal of Materials, Metallurgy, and Materials, vol. 22(7), pp. 674-681, 2015.
    [45] F. L. Yang Guo, Haochen Zhu, Guangming Li, Wenzhi He, "Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)," Waste Management, vol. 51 no.1, pp. 227-233, 2016.
    [46] K. I. R. C.K. Lee, "Preparation of LiCoO2 from spent lithium-ion batteries," J.Power Sources, vol. 109 no.1, pp. 17-21, 2002.
    [47] AnetaŁukomska, UrszulaDomańska, "Recovery of zinc and manganese from “black mass” of waste Zn-MnO2 alkaline batteries by solvent extraction technique with ionic liquids, DESs and organophosphorous-based acids," Journal of Molecular Liquids, vol.338, pp.116590, 2021.
    [48] Xianfeng Hu, Guozhu Ye, "A novel process on the recovery of zinc and manganese from spent alkaline and zinc-carbon batteries," Journal of Hazardous Materials, vol. 411, pp. 124928, 2021.
    [49] N.M.Ippolito, "Utilization of automotive shredder residues in a thermal process for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries," Waste Management, vol.51, pp. 182-189, 2016.
    [50] W.-S. Chen and H.-J. Ho, "Recovery of valuable metals from lithium-ion batteries NMC cathode waste materials by hydrometallurgical methods, " Metals, Vol. 8(5), pp. 321, 2018.
    [51] Tahereh Rostami, "Recovery of lithium, cobalt, nickel, and manganese from spent lithium-ion batteries through a wet-thermal process," Materials Research Bulletin, vol. 153, pp. 111897, 2022.
    [52] Zichun Yao, "Recovery nano-flake (100 nm thickness) of zero-valent manganese from spent lithium-ion batteries, " Journal of Cleaner Production, vol.278, pp. 123867, 2021.
    [53]W.-S. Chen, T.-J. Chen, C.-H. Lee, Y.-J. Cheng, Y.-A. Chen, F.-W. Liu, Y.-C. Wang, Y.-L. Chueh, "Recovery of Valuable Materials from the Waste Crystalline-Silicon Photovoltaic Cell and Ribbon, "Processes, vol. 9(4), pp. 712, 2021.
    [54] O. M. E. Hussaini and M. A. Mahdy, "Sulfuric acid leaching of Kab Amiri niobium–tantalum bearing minerals, Central Eastern Desert, Egypt," Hydrometallurgy, vol. 64, pp. 219–229, 2002.
    [55] B. S. Wu, H.; Wen, J.-K, "Sulfuric acid leaching of low-grade refractory tantalum–niobium and associated rare earths minerals in Panxi area of China," J. Rar. Met, vol. 34, pp. 202-206, 2015.
    [56]Munmun Agrawal, Randhir Singh, Kamalesh K.Singh, "Recovery of silica-free tantalum from epoxy-coated tantalum capacitors using hydrometallurgical routes, " Journal of Environmental Chemical Engineering, vol. 10, pp. 108182, 2022.
    [57] A.I. Nikolaev, V.G. Maiorov, "New approaches to niobium and tantalum extraction technology," Doklady Chemistry, vol. 415, pp. 167-169, 2007.
    [58] M. Nete, W. Purcell, J.T. Nel, "Separation and isolation of tantalum and niobium from tantalite using solvent extraction and ion exchange, " Hydrometallurgy, vol. 149, pp. 31-40, 2014.
    [59] S. Nishimura, J. Moriyama, I. Kushima. "Extraction and separation of tantalum and niobium by liquid-liquid extraction in the HF-H2SO4-TBP system.", Transactions of the Japan Institute of Metals, vol. 5, pp. 39-42, 1964.
    [60] S.N. Bhattacharyya, B. Ganguly,. "Solvent extraction separation of niobium and tantalum," Solvent Extraction and Ion Exchange, vol. 2, pp. 699-740, 1984.
    [61] T. Okada, "Manufacturing of Special Niobium Oxides for Optical and Ceramic Applications," International Symposium on Niobium 2001. December, Orland, FL, USA. 2001.
    [62] J. Han, Y. Zhou, "Development of Ta & Nb extraction and stripping technology and equipment," Rare Metals and Cemented Carbides, vol. 32, pp. 15-20 (in Chinese), 2004.
    [63] A. Feather, P. Clark, G. Boshoff, "Production of High Purity Tantalum Oxide by Solvent Extraction," International Solvent Extraction Conference 1999, pp.
    789-794、1999.
    [64] O.M.E Hussaini, N.M. Rice. “Liquid-liquid extraction of niobium and tantalum from aqueous sulphate/fluoride solutions by a tertiary amine.", Hydrometallurgy, vol. 72, pp. 259-267,2004.
    [65] Cyril Micheau, Manuel Lejeune, Guilhem Arrachart, Micheline Draye, Raphael Turgis, Stéphanie Michel, Sophie Legeai, and Stéphane Pellet-Rostaing, "Recovery of tantalum from synthetic sulfuric leach solutions by solvent extraction with phosphonate functionalized ionic liquids," Hydrometallurgy, vol. 189, p. 105107, 2019.
    [66] R. Turgis, G. Arrachart, S. Michel, S. Legeai, M. Lejeune, M. Draye, and S. Pellet-Rostaing, "Ketone functionalized task specific ionic liquids for selective tantalum extraction," Separation and Purification Technology, vol. 196, pp. 174-182, 2018.
    [67] N. Takeno, "Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases," National Institute of Advanced Industrial Science and Technology vol. 419, 2005.
    [68] C. D. Tsakiroglou, K. Hajdu, K. Terzi, C. Aggelopoulos, and M. Theodoropoulou, "A statistical shrinking core model to estimate the overall dechlorination rate of PCE by an assemblage of zero-valent iron nanoparticles," Chemical Engincering Science, vol. 167 no.10, pp. 191-203, 2017.
    [69] X. Li, Z. Yang, J. Zhao, Y. Wang, and T. Lei, "A modified shrinking core model for the reaction between acid and hetero-granular rough mineral particles," Hydrometallurgy, vol. 153 no.1, pp. 114-120, 2015.
    [70] J. By Ralph C. Young and Carl H. Brubaker, "Reaction of Tantalum with Hydrogen Chloride, Hydrogen Bromide and Tantalum Pentachloride; Action of Hydrogen on Tantalum Pentachloride," Western Regional Research Lab.Albany 6, Calif., 1952.
    [71] J. Gonzalez, F. Gennari, A. Bohe, M. d. C. Ruiz, J. Rivarola, and D. M. Pasquevich, "Chlorination of niobium and tantalum ore," Thermochimica Acta, vol. 311, pp. 61-69, 1998.
    [72] H.-M. Hsieh and W.-J. Lee, "Comparison of the Properties of Epoxy Resin and Epoxidized Novolactype Phenol-formaldehyde Resins," 林業研究季刊, vol. 37(1), pp. 55-64, 2015.
    [73] H. Dhaouadi, O. Ghodbane, F. Hosni, F. Touati, "Mn3O4 Nanoparticles: Synthesis, Characterization, and Dielectric Properties" Int. Sch. Res. Netw. ISRN Spectrosc., vol. 2012 no. 1, pp.1-8, 2012
    [74] Tiefeng Peng, Longjun Xu, Hongchong Chen, "Preparation and characterization of high specific surface area Mn3O4 from electrolytic manganese residue" Central European Journal of Chemistry, vol. 8 no. 5, pp. 1059-1068, 2010.
    [75] Guiling Wang, Zhipeng Ma, Yuqian Fan, Guangjie Shao, Lingxue Kong, Weimin Gao, "Preparation of size-selective Mn3O4 hexagonal nanoplates with superior electrochemical properties for pseudocapacitors" Physical Chemistry Chemical Physics, vol. 17 no. 35, pp.23017-23025, 2015

    無法下載圖示 校內:2027-09-01公開
    校外:2027-09-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE