簡易檢索 / 詳目顯示

研究生: 藍聖閔
Lan, Sheng-Min
論文名稱: 奈微尺度設計在抑制骨肉瘤生長與促進神經再生之探討
A study of the nano-scale engineering in the suppression of osteosarcoma growth and promotion of neural regeneration
指導教授: 謝達斌
Shieh, Dar-Bin
黃玲惠
Huang, Lynn L.H.
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 95
中文關鍵詞: 零價鐵奈米骨肉瘤選擇性毒殺透明質酸神經再生分子量
外文關鍵詞: zerovalent iron, nanoparticle, osteosarcoma, selective toxicity, hyaluronan, nerve regeneration, molecular weights
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 70年代前,骨肉瘤治療主要仰賴手術切除與化療,但預後不佳且部位在四肢的患者往往都需截肢。自1976年發明在術前施行新佐劑化療(neoadjuvant chemotherapy)後,不僅總體預後大幅改善,且患者肢體大都得以保留。但仍有三到四成原本無癌轉移的患者後續發生轉移而導致存活率降低。即便在積極手術與化療下,全期(all SEER stages)綜合五年存活率仍僅約六成,因而亟需開創性新療法的介入。骨肉瘤的局部增生擴展乃至遠端轉移都會造成種種併發症,尤其是腫瘤導致的神經壓迫,會嚴重降低病人的生活功能與品質。故骨肉瘤的原發性疾病本身與次發性的壓迫性神經病變都是當今重要的臨床課題,本研究探討兩種奈米材料的治療潛力。針對前者我們使用鐵核金殼的奈米粒子,在研究中我們發現其對於骨肉瘤細胞相對於正常組織的選擇性毒殺能力,且與化療藥物合併使用具有加成效果,我們更深入探討了這種選擇性毒殺的分子機轉,發現與溶脢體酸化、粒線體膜電位喪失、自由基與氧化壓力累積、細胞凋亡等相關。針對後者,我們則探討在壓迫性神經病變中,不同濃度與分子量的透明質酸形成之骨架對於神經再生的影響。我們發現高分子量的透明質酸對於神經再生與功能復元的助益高過低分子量的透明質酸,且即便是低分子量的透明質酸,也具有促進神經修復再生的優勢。奈米粒子與透明質酸在許多研究中因其高度的化學可修飾性都被用於攜帶藥物之載體。而本研究則發現這些奈米材料顯著的內源性藥理作用及相關分子機制,相信針對癌細胞具有選擇性的奈米材料結合再生醫學的聯合開發,必能提供未來癌症患者在治療與術後重建更加完整的臨床解決方案。

    Surgical resection combined with adjuvant chemotherapy was the major treatment of choice for osteosarcoma in the 1970s. The general prognosis was poor then, and amputation was required for most patients with limb osteosarcoma. The neoadjuvant chemotherapy introduced in 1976 to perform chemotherapy before surgical resection has greatly improved the prognosis and limb preservation. However, there were still 30~40% non-metastatic patients developed distant metastasis subsequently and compromised the overall survival. The 5-year survival rate of osteosarcoma of all SEER (Surveillance, Epidemiology, and End Results) stages combined was only around 60%, signifying the unmet needs of developing novel effective therapeutics. Complications of osteosarcoma arise from local tumor growth and distant metastasis where tumor-induced compression neuropathy is a highly disabling clinical issue that greatly impairs the function and quality of life of the patient. Treating osteosarcoma per se together with effective prevention or management of tumor-induced compression neuropathy thus becomes an important clinical challenge. In this study, we investigated the therapeutic potential of nano-scale engineering for both anti-cancer therapy and neural regeneration. We synthesized a zerovalent iron-core gold-shell nanoparticle (ZVI@Au) and discovered its selective cytotoxicity to osteosarcoma cells in comparison to non-malignant mesenchymal cells. The ZVI@Au also presented synergistic efficacy when combined with traditional chemotherapeutic agents for osteosarcoma treatment in vitro. The molecular mechanism of the selective cytotoxicity was further explored and involved lysosomal acidification, mitochondrial membrane potential loss, accumulation of intracellular free radical and oxidative stress, as well as induction of programmed cell death in cancer cells. We also investigated hyaluronan (HA) of different concentrations and molecular weights and compared their efficacy in vivo. We found that higher molecular-weight (MW) HA facilitated neural regeneration and restored neurobehavioral functions superior to lower MW HA. In addition, even the lower MW HA presented significant benefits compared to the control group. In most publications, the roles of nanomaterials have been mainly focused on serving as an effective carrier of therapeutics for both gold- or iron- based metallic nanoparticles (NP) and HA owing to their high biocompatibility and biochemical modifiability. The significance of this thesis was the change in the concept of using NP, which serves as an active pharmaceutical entity while preserving their nano-scale advantages, e.g., targeting tumor lesion by enhanced permeation and retention (EPR) effect. We believe that integration of anti-cancer nano-therapy and effective nano-scale regenerative medicine will open a new chapter to provide a total solution in the future translational medicine for current untreatable or challenging malignancies.

    摘要…………………………………………………………………………………………I Abstract……………………………………………………………………………………II Acknowledgement………………………………………………………………………..IV Table of Content…………………………………………………….……………………..V List of Figures…………………………………………………………………………….IX List of Tables……………………………………………………………………………..XII Abbreviations…………………………………………………………………………...XIII Introduction………………………………………………………………………………..1 1.1 Basics of nanoparticle (NP)….…………………………………………………….1 1.2 Versatile biomedical applications of nanoparticle…………………………………2 1.3 Medical use of iron-containing nanoparticle………………………………………3 1.4 Development of the therapeutic nanoparticles composed of a zerovalent iron core and a gold shell…………………………………………………………………….4 1.5 Epidemiology of osteosarcoma……………………………………………………4 1.6 Metastasis hampers prognosis of osteosarcoma…………………………………...5 1.7 Neurologic Complications of Cancers………………………………………….....6 1.8 Compression neuropathy (nerve compression syndrome or nerve entrapment syndrome)……………………………………………………………………….....7 1.9 Acute traumatic peripheral nerve injury…………………………….......................7 1.10 Physiology of regeneration from traumatic peripheral nerve injury……………..8 1.11 Basics of hyaluronan (HA) and the important role of its molecular weight……..9 1.12 Potential toxicity of hyaluronan derivatives in clinical settings………………...10 1.13 Vulnerability of peripheral nerve tissue to hyaluronan crosslinkers……………11 Materials and Methods…………………………………………………………………..13 2.1 Study of the ZVI@Au nano-scale engineering for suppression of osteosarcoma growth………………………………………........................................................13 2.1.1 Synthesis of the zerovalent iron-core gold-shell nanoparticle (ZVI@Au)...13 2.1.2 Characterization of ZVI@Au.……………………………………………...13 2.1.2.1 Morphologic observation by transmission electron microscopy (TEM) and elemental analysis by energy-dispersive X-ray spectroscopy (EDXS) ……………………………………………...13 2.1.2.2 Crystalline structure analysis by X-ray diffraction (XRD)………...14 2.1.2.3 Particle size analysis by dynamic light scattering (DLS) and particle charge analysis by zeta potential measurement……………………14 2.1.3 Cell culture and reagents…………………………………………………...14 2.1.4 Cell viability analysis using MTT assay…………………………….……..15 2.1.5 Apoptosis assay using flow cytometry…………………….……………….17 2.1.6 Measurements of reactive oxygen species (ROS) stress and mitochondrial membrane potential…………………………………………………………17 2.1.7 Delineation of the molecular mechanisms of ZVI@Au-induced cytotoxicity ……………………………………………………………………………….18 2.1.8 Lysosomal pH measurements………………………………….…………...19 2.1.9 Pathway identification using ingenuity pathway analysis (IPA®)…………19 2.1.10 Evaluation of in vivo tumor suppression efficacy of ZVI@Au…………...20 2.1.10.1 Animals and maintenance……………………………………….20 2.1.10.2 Bone volume meausrement using μCT imaging system………..21 2.1.10.3 The orthotopic intratibial osteosarcoma mouse model………….22 2.2 Study of the hyaluronan nano-scale engineering………………………………...22 2.2.1 Animal preparation and perineural application of hyaluronan…………...22 2.2.2 Measurement of somatosensory-evoked potential (SSEP)……………….24 2.2.3 Neurobehavioral function examination…………………………………..25 2.2.4 Morphometric assessment of myelin integrity…………………….……...26 2.2.5 Immunofluorescence (IF) microscopic evaluation……………………….26 2.2.6 Histopathologic Examinations……………………………………………27 2.2.7 In vitro cell survival assay by fluorescence dyes……...………………….27 2.2.8 Statistics………………………………………………………………......28 Results……………………………………………………………………………………..29 3.1 The selective cytotoxicity of ZVI@Au to osteosarcoma cells………………..….29 3.1.1 Synthesis and characterization of ZVI@Au……………………………….29 3.1.2 In vitro cytotoxicity of ZVI@Au………………………………………….29 3.1.3 Mechanism of ZVI@Au cytotoxicity to osteosarcoma cells……………...30 3.1.4 In vivo therapeutic efficacy of ZVI@Au in an orthotopic xenograft osteosarcoma model of mice………………………………………………33 3.2 The beneficial effect of hyaluronan of different molecular weights and concentrations on nerve regeneration from traumatic injury…………………….34 3.2.1 Electroneurophysiological findings…………………………….………….34 3.2.2 Neurobehavioral function observation………………………………….....35 3.2.3 Histopathologic examinations……………………………………………..36 3.3 The safety of perineural application of crosslinked HA………………………….36 3.3.1 Electroneurophysiological findings………………………………………..37 3.3.2 Neurobehavioral assessment using walking-track analysis………………..37 3.3.3 Histopathologic observations………………………………………………38 3.3.4 In vitro cytotoxicity by MTT assay and fluorescence dye kit……………...38 Discussion…………………………………………………………………………………40 4.1 The selective toxicity of ZVI@Au to certain osteosarcoma……………………...40 4.2 The impact of molecular weights and concentrations of hyaluronan on nerve regeneration………………………………………………………………………43 4.3 The safety of perinerual application of crosslinked HA…………………………..47 Reference………………………………………………………………………………….51 Figures…………………………………………………………………………………….60 Tables……………………………………………………………………………………...84 Appendix………………………………………………………………………………….90

    1. Khan, I., K. Saeed, and I. Khan, Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 2019. 12(7): p. 908-931.
    2. nanoparticle | Definition, Size Range, & Applications | Britannica. Available from: https://www.britannica.com/science/nanoparticle.
    3. Wang, Y.L. and Y.N. Xia, Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Letters, 2004. 4(10): p. 2047-2050.
    4. Gobbo, O.L., et al., Magnetic Nanoparticles in Cancer Theranostics. Theranostics, 2015. 5(11): p. 1249-63.
    5. Lima-Tenorio, M.K., et al., Magnetic nanoparticles: In vivo cancer diagnosis and therapy. Int J Pharm, 2015. 493(1-2): p. 313-27.
    6. Kang, M.S., et al., State of the Art Biocompatible Gold Nanoparticles for Cancer Theragnosis. Pharmaceutics, 2020. 12(8).
    7. Erickson, H.P., Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online, 2009. 11: p. 32-51.
    8. HOW BIG ARE THE MOLECULAR MACHINES OF THE CENTRAL DOGMA? ; Available from: http://book.bionumbers.org/how-big-are-the-molecular-machines-of-the-central-dogma/.
    9. Mendes, R.G., et al., Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochim Biophys Acta, 2014. 1840(1): p. 160-9.
    10. Mehrotra, N. and R.M. Tripathi, Short interfering RNA therapeutics: nanocarriers, prospects and limitations. IET Nanobiotechnol, 2015. 9(6): p. 386-95.
    11. Teo, P.Y., et al., Co-delivery of drugs and plasmid DNA for cancer therapy. Adv Drug Deliv Rev, 2015.
    12. Hartman, K.B., L.J. Wilson, and M.G. Rosenblum, Detecting and treating cancer with nanotechnology. Mol Diagn Ther, 2008. 12(1): p. 1-14.
    13. Sumer, B. and J. Gao, Theranostic nanomedicine for cancer. Nanomedicine (Lond), 2008. 3(2): p. 137-40.
    14. Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 1986. 46(12 Pt 1): p. 6387-92.
    15. Bazak, R., et al., Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol, 2015. 141(5): p. 769-84.
    16. Shevtsov, M. and G. Multhoff, Recent Developments of Magnetic Nanoparticles for Theranostics of Brain Tumor. Curr Drug Metab, 2016. 17(8): p. 737-744.
    17. Kim, J., et al., Use of Nanoparticle Contrast Agents for Cell Tracking with Computed Tomography. Bioconjug Chem, 2017. 28(6): p. 1581-1597.
    18. Cormode, D.P., P.C. Naha, and Z.A. Fayad, Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging, 2014. 9(1): p. 37-52.
    19. Abakumov, M.A., et al., Contrast Agents Based on Iron Oxide Nanoparticles for Clinical Magnetic Resonance Imaging. Bull Exp Biol Med, 2019. 167(2): p. 272-274.
    20. Thomas, R., I.K. Park, and Y.Y. Jeong, Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci, 2013. 14(8): p. 15910-30.
    21. Fu, F., D.D. Dionysiou, and H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater, 2014. 267: p. 194-205.
    22. Pelgrift, R.Y. and A.J. Friedman, Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev, 2013. 65(13-14): p. 1803-15.
    23. Cassim, S.M., et al., Development of Novel Magnetic Nanoparticles for Hyperthermia Cancer Therapy. Proc SPIE Int Soc Opt Eng, 2011. 7901: p. 790115.
    24. Wu, Y.N., et al., Cancer-cell-specific cytotoxicity of non-oxidized iron elements in iron core-gold shell NPs. Nanomedicine, 2011. 7(4): p. 420-7.
    25. Wu, Y.N., et al., The anticancer properties of iron core-gold shell nanoparticles in colorectal cancer cells. Int J Nanomedicine, 2013. 8: p. 3321-31.
    26. Wu, Y.N., et al., The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials, 2011. 32(20): p. 4565-73.
    27. Gu, W., et al., Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine, 2013. 8: p. 2305-17.
    28. Friebele, J.C., et al., Osteosarcoma: A Meta-Analysis and Review of the Literature. Am J Orthop (Belle Mead NJ), 2015. 44(12): p. 547-53.
    29. Osteosarcoma | cancer.org. Available from: https://www.cancer.org/cancer/osteosarcoma.html.
    30. Survival rates for osteosarcoma.
    31. Jeffree, G.M., C.H. Price, and H.A. Sissons, The metastatic patterns of osteosarcoma. Br J Cancer, 1975. 32(1): p. 87-107.
    32. Link, M.P., et al., The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med, 1986. 314(25): p. 1600-6.
    33. Anninga, J.K., et al., Chemotherapeutic adjuvant treatment for osteosarcoma: where do we stand? Eur J Cancer, 2011. 47(16): p. 2431-45.
    34. Lisa M DeAngelis, J.B.P., Neurologic Complications of Cancer. 2 ed. 2008.
    35. Giglio, P. and M.R. Gilbert, Neurologic complications of cancer and its treatment. Curr Oncol Rep, 2010. 12(1): p. 50-9.
    36. Nerve Entrapment Syndromes: Practice Essentials, Etiology, Pathophysiology.
    37. Nerve compression syndrome - Wikipedia.
    38. Martinez, A.M., et al., Neurotrauma and mesenchymal stem cells treatment: From experimental studies to clinical trials. World J Stem Cells, 2014. 6(2): p. 179-94.
    39. Chan, K.M., et al., Improving peripheral nerve regeneration: From molecular mechanisms to potential therapeutic targets. Exp Neurol, 2014. 261C: p. 826-835.
    40. Evans-Jones, G., et al., Congenital brachial palsy: incidence, causes, and outcome in the United Kingdom and Republic of Ireland. Arch Dis Child Fetal Neonatal Ed, 2003. 88(3): p. F185-9.
    41. Noble, J., et al., Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma, 1998. 45(1): p. 116-22.
    42. Robinson, L.R., traumatic injury to peripheral nerves. Suppl Clin Neurophysiol, 2004. 57: p. 173-186.
    43. Sunderland, S., Rate of regeneration in human peripheral nerves; analysis of the interval between injury and onset of recovery. Arch Neurol Psychiatry, 1947. 58(3): p. 251-95.
    44. Fu, S.Y. and T. Gordon, Contributing factors to poor functional recovery after delayed nerve repair: prolonged axotomy. J Neurosci, 1995. 15(5 Pt 2): p. 3876-85.
    45. Seddon, H.J., A Classification of Nerve Injuries. Br Med J, 1942. 2(4260): p. 237-9.
    46. Sunderland, S., A classification of peripheral nerve injuries producing loss of function. Brain, 1951. 74(4): p. 491-516.
    47. Martinez, A.M. and L.C. Ribeiro, Ultrastructural localization of calcium in peripheral nerve fibres undergoing Wallerian degeneration: an oxalate-pyroantimonate and X-ray microanalysis study. J Submicrosc Cytol Pathol, 1998. 30(3): p. 451-8.
    48. Zhai, Q., et al., Involvement of the ubiquitin-proteasome system in the early stages of wallerian degeneration. Neuron, 2003. 39(2): p. 217-25.
    49. Campana, W.M., Schwann cells: activated peripheral glia and their role in neuropathic pain. Brain Behav Immun, 2007. 21(5): p. 522-7.
    50. Liu, H.M., L.H. Yang, and Y.J. Yang, Schwann cell properties: 3. C-fos expression, bFGF production, phagocytosis and proliferation during Wallerian degeneration. J Neuropathol Exp Neurol, 1995. 54(4): p. 487-96.
    51. Murinson, B.B., et al., Degeneration of myelinated efferent fibers prompts mitosis in Remak Schwann cells of uninjured C-fiber afferents. J Neurosci, 2005. 25(5): p. 1179-87.
    52. Pellegrino, R.G., et al., Events in degenerating cat peripheral nerve: induction of Schwann cell S phase and its relation to nerve fibre degeneration. J Neurocytol, 1986. 15(1): p. 17-28.
    53. Stoll, G., et al., Wallerian degeneration in the peripheral nervous system: participation of both Schwann cells and macrophages in myelin degradation. J Neurocytol, 1989. 18(5): p. 671-83.
    54. Ouaissi, M., et al., Post-operative adhesions after digestive surgery: their incidence and prevention: review of the literature. J Visc Surg, 2012. 149(2): p. e104-14.
    55. Al-Jaroudi, D. and T. Tulandi, Adhesion prevention in gynecologic surgery. Obstet Gynecol Surv, 2004. 59(5): p. 360-7.
    56. Al-Jabri, S. and T. Tulandi, Management and prevention of pelvic adhesions. Semin Reprod Med, 2011. 29(2): p. 130-7.
    57. Kim, J.E. and J.M. Sykes, Hyaluronic acid fillers: history and overview. Facial Plast Surg, 2011. 27(6): p. 523-8.
    58. Gold, M., The science and art of hyaluronic acid dermal filler use in esthetic applications. J Cosmet Dermatol, 2009. 8(4): p. 301-7.
    59. Kim, J.J. and G.R. Evans, Applications of biomaterials in plastic surgery. Clin Plast Surg, 2012. 39(4): p. 359-76.
    60. Voigt, J. and V.R. Driver, Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regen, 2012. 20(3): p. 317-31.
    61. Reichenbach, S., et al., Hylan versus hyaluronic acid for osteoarthritis of the knee: a systematic review and meta-analysis. Arthritis Rheum, 2007. 57(8): p. 1410-8.
    62. Lo, G.H., et al., Intra-articular hyaluronic acid in treatment of knee osteoarthritis: a meta-analysis. JAMA, 2003. 290(23): p. 3115-21.
    63. Pakulska, M.M., B.G. Ballios, and M.S. Shoichet, Injectable hydrogels for central nervous system therapy. Biomed Mater, 2012. 7(2): p. 024101.
    64. Peattie, R.A., Release of growth factors, cytokines and therapeutic molecules by hyaluronan-based hydrogels. Curr Pharm Biotechnol, 2012. 13(7): p. 1299-305.
    65. Vercruysse, K.P. and G.D. Prestwich, Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug Carrier Syst, 1998. 15(5): p. 513-55.
    66. Petrey, A.C. and C.A. de la Motte, Hyaluronan, a crucial regulator of inflammation. Front Immunol, 2014. 5: p. 101.
    67. Ruppert, S.M., et al., Tissue integrity signals communicated by high-molecular weight hyaluronan and the resolution of inflammation. Immunol Res, 2014. 58(2-3): p. 186-92.
    68. Karbownik, M.S. and J.Z. Nowak, Hyaluronan: towards novel anti-cancer therapeutics. Pharmacol Rep, 2013. 65(5): p. 1056-74.
    69. Wang, K.K., et al., Hyaluronic acid enhances peripheral nerve regeneration in vivo. Microsurgery, 1998. 18(4): p. 270-5.
    70. Seckel, B.R., et al., Hyaluronic acid through a new injectable nerve guide delivery system enhances peripheral nerve regeneration in the rat. J Neurosci Res, 1995. 40(3): p. 318-24.
    71. Ozgenel, G.Y., Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery, 2003. 23(6): p. 575-81.
    72. Park, J.S., et al., Effect of hyaluronic acid-carboxymethylcellulose solution on perineural scar formation after sciatic nerve repair in rats. Clin Orthop Surg, 2011. 3(4): p. 315-24.
    73. Adanali, G., et al., Effects of hyaluronic acid-carboxymethylcellulose membrane on extraneural adhesion formation and peripheral nerve regeneration. J Reconstr Microsurg, 2003. 19(1): p. 29-36.
    74. Maleki, A., A.L. Kjoniksen, and B. Nystrom, Characterization of the chemical degradation of hyaluronic acid during chemical gelation in the presence of different cross-linker agents. Carbohydr Res, 2007. 342(18): p. 2776-92.
    75. Jia, X., et al., Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid. Biomaterials, 2004. 25(19): p. 4797-804.
    76. Kwon, S.G., et al., Ischemic Oculomotor Nerve Palsy and Skin Necrosis Caused by Vascular Embolization After Hyaluronic Acid Filler Injection: A Case Report. Ann Plast Surg, 2012.
    77. Luquita, A., et al., In vitro and ex vivo effect of hyaluronic acid on erythrocyte flow properties. J Biomed Sci, 2010. 17: p. 8.
    78. Cowan, A.Q., D.J. Cho, and R.S. Rosenson, Importance of blood rheology in the pathophysiology of atherothrombosis. Cardiovasc Drugs Ther, 2012. 26(4): p. 339-48.
    79. Wang, P.H., et al., Effects of topical corticosteroids on the sciatic nerve: an experimental study to adduce the safety in treating carpal tunnel syndrome. J Hand Surg Eur Vol, 2011. 36(3): p. 236-43.
    80. Wolfe, D.M., et al., Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. Eur J Neurosci, 2013. 37(12): p. 1949-61.
    81. Crnalic, S., et al., A novel spontaneous metastasis model of human osteosarcoma developed using orthotopic transplantation of intact tumor tissue into tibia of nude mice. Clin Exp Metastasis, 1997. 15(2): p. 164-72.
    82. Jou, I.M., The effects from lumbar nerve root transection in rats on spinal somatosensory and motor-evoked potentials. Spine (Phila Pa 1976), 2004. 29(2): p. 147-55.
    83. Jou, I.M., et al., Spinal somatosensory evoked potential to evaluate neurophysiologic changes associated with postlaminotomy fibrosis: an experimental study. Spine (Phila Pa 1976), 2007. 32(19): p. 2111-8.
    84. Lan, S.M., et al., Investigation into the safety of perineural application of 1,4-butanediol diglycidyl ether-crosslinked hyaluronan in a rat model. J Biomed Mater Res B Appl Biomater, 2015. 103(3): p. 718-26.
    85. Inserra, M.M., D.A. Bloch, and D.J. Terris, Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery, 1998. 18(2): p. 119-24.
    86. Sarikcioglu, L., B.M. Demirel, and A. Utuk, Walking track analysis: an assessment method for functional recovery after sciatic nerve injury in the rat. Folia Morphol (Warsz), 2009. 68(1): p. 1-7.
    87. Wakaskar, R.R., Promising effects of nanomedicine in cancer drug delivery. J Drug Target, 2018. 26(4): p. 319-324.
    88. Huang, K.J., et al., Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater Sci, 2019. 7(4): p. 1311-1322.
    89. Yang, L.X., et al., Iron Release Profile of Silica-Modified Zero-Valent Iron NPs and Their Implication in Cancer Therapy. Int J Mol Sci, 2019. 20(18).
    90. Lee, K.T., et al., Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFe2O4 Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells. ACS Appl Mater Interfaces, 2017. 9(2): p. 1273-1279.
    91. Uskokovic, V., S. Pernal, and V.M. Wu, Earthicle: The Design of a Conceptually New Type of Particle. ACS Appl Mater Interfaces, 2017. 9(2): p. 1305-1321.
    92. Yang, L.X., et al., Silver-coated zero-valent iron nanoparticles enhance cancer therapy in mice through lysosome-dependent dual programed cell death pathways: triggering simultaneous apoptosis and autophagy only in cancerous cells. J Mater Chem B, 2020. 8(18): p. 4122-4131.
    93. Mizushima, N., T. Yoshimori, and B. Levine, Methods in mammalian autophagy research. Cell, 2010. 140(3): p. 313-26.
    94. Shi, R., et al., Selective imaging of cancer cells with a pH-activatable lysosome-targeting fluorescent probe. Anal Chim Acta, 2017. 988: p. 66-73.
    95. Noubactep, C., Metallic iron for environmental remediation: A review of reviews. Water Res, 2015. 85: p. 114-23.
    96. Zhang, M.H., et al., A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci Total Environ, 2019. 670: p. 110-121.
    97. Javaid, R. and U.Y. Qazi, Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. Int J Environ Res Public Health, 2019. 16(11).
    98. Bock, F.J. and S.W.G. Tait, Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol, 2020. 21(2): p. 85-100.
    99. Tait, S.W., G. Ichim, and D.R. Green, Die another way--non-apoptotic mechanisms of cell death. J Cell Sci, 2014. 127(Pt 10): p. 2135-44.
    100. Tait, S.W. and D.R. Green, Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol, 2013. 5(9).
    101. Andreyev, A.Y., Y.E. Kushnareva, and A.A. Starkov, Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc), 2005. 70(2): p. 200-14.
    102. Balaban, R.S., S. Nemoto, and T. Finkel, Mitochondria, oxidants, and aging. Cell, 2005. 120(4): p. 483-95.
    103. Ma, K., et al., Mitophagy, Mitochondrial Homeostasis, and Cell Fate. Front Cell Dev Biol, 2020. 8: p. 467.
    104. Wallace, D.C., Mitochondria and cancer. Nat Rev Cancer, 2012. 12(10): p. 685-98.
    105. Vyas, S., E. Zaganjor, and M.C. Haigis, Mitochondria and Cancer. Cell, 2016. 166(3): p. 555-566.
    106. Goldberg, V.M. and L. Goldberg, Intra-articular hyaluronans: the treatment of knee pain in osteoarthritis. J Pain Res, 2010. 3: p. 51-6.
    107. Ali, M., et al., Characterization of sodium hyaluronate blends using frit inlet asymmetrical flow field-flow fractionation and multiangle light scattering. Anal Bioanal Chem, 2012. 402(3): p. 1269-76.
    108. Bridge, P.M., et al., Nerve crush injuries--a model for axonotmesis. Exp Neurol, 1994. 127(2): p. 284-90.
    109. Mohammad, J.A., et al., Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: effect of local delivery and incorporation of nerve growth factor/hyaluronic acid media. Ann Plast Surg, 2000. 44(1): p. 59-64.
    110. Park, J., et al., Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. J Biomed Mater Res A, 2010. 93(3): p. 1091-9.
    111. Wang, Y., et al., Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials, 2012. 33(9): p. 2681-92.
    112. Barreiros, V.C., et al., Morphological and morphometric analyses of crushed sciatic nerves after application of a purified protein from natural latex and hyaluronic acid hydrogel. Growth Factors, 2014. 32(5): p. 164-70.
    113. Cowman, M.K., et al., The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front Immunol, 2015. 6: p. 261.
    114. Vistejnova, L., et al., Low molecular weight hyaluronan mediated CD44 dependent induction of IL-6 and chemokines in human dermal fibroblasts potentiates innate immune response. Cytokine, 2014. 70(2): p. 97-103.
    115. Stern, R., A.A. Asari, and K.N. Sugahara, Hyaluronan fragments: an information-rich system. Eur J Cell Biol, 2006. 85(8): p. 699-715.
    116. Wang, J., et al., Hyaluronan tetrasaccharide exerts neuroprotective effect and promotes functional recovery after acute spinal cord injury in rats. Neurochem Res, 2015. 40(1): p. 98-108.
    117. Yamanokuchi, H., [Effects of hyaluronan tetrasaccharide on the differentiation of neuronal cells and oligodendrocyte precursor cells]. Kokubyo Gakkai Zasshi, 2012. 79(3): p. 100-9.
    118. J. Necas, L.B., P. Brauner, J. Kolar, Hyaluronic acid (hyaluronan): a review. Veterinarni Medicina, 2008. 53(8): p. 397-411.
    119. Tomihata, K. and Y. Ikada, Crosslinking of hyaluronic acid with water-soluble carbodiimide. J Biomed Mater Res, 1997. 37(2): p. 243-51.
    120. Shih, H.N., et al., Reduction in experimental peridural adhesion with the use of a crosslinked hyaluronate/collagen membrane. J Biomed Mater Res B Appl Biomater, 2004. 71(2): p. 421-8.
    121. Juni, P., et al., Efficacy and safety of intraarticular hylan or hyaluronic acids for osteoarthritis of the knee: a randomized controlled trial. Arthritis Rheum, 2007. 56(11): p. 3610-9.
    122. Honig, J.F., U. Brink, and M. Korabiowska, Severe granulomatous allergic tissue reaction after hyaluronic acid injection in the treatment of facial lines and its surgical correction. J Craniofac Surg, 2003. 14(2): p. 197-200.
    123. Dragomir, C.L., et al., Acute inflammation with induction of anaphylatoxin C5a and terminal complement complex C5b-9 associated with multiple intra-articular injections of hylan G-F 20: a case report. Osteoarthritis Cartilage, 2012. 20(7): p. 791-5.
    124. Sasaki, M., Y. Miyazaki, and T. Takahashi, Hylan G-F 20 induces delayed foreign body inflammation in Guinea pigs and rabbits. Toxicol Pathol, 2003. 31(3): p. 321-5.
    125. Goomer, R.S., et al., Native hyaluronan produces less hypersensitivity than cross-linked hyaluronan. Clin Orthop Relat Res, 2005(434): p. 239-45.
    126. Leopold, S.S., et al., Increased frequency of acute local reaction to intra-articular hylan GF-20 (synvisc) in patients receiving more than one course of treatment. J Bone Joint Surg Am, 2002. 84-A(9): p. 1619-23.
    127. DeLisa, J.A., B.M. Gans, and N.E. Walsh, Physical Medicine and Rehabilitation: Principles and Practice. 2004: Lippincott Williams & Wilkins.
    128. Hoare, T., et al., Rheological blends for drug delivery. II. Prolongation of nerve blockade, biocompatibility, and in vitro-in vivo correlations. J Biomed Mater Res A, 2010. 92(2): p. 586-95.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE