簡易檢索 / 詳目顯示

研究生: 吳書嫻
Wu, Shu-Hsien
論文名稱: 利用Clostridium acetobutylicum轉化微藻殘渣產製生質丁醇之研究
Study of utilizing oil-extracted microalgae residues for butanol production by Clostridium acetobutylicum
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 106
中文關鍵詞: ABE 發酵微藻殘渣生質丁酸甲烷化發酵
外文關鍵詞: ABE fermentation, oil-extracted microalgae residues, biological butyrate, methanogenesis
相關次數: 點閱:161下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於科技快速發展,人們對能源的需求大幅增長,使石化燃料被快速消耗,造成能源短缺與環境污染等相關問題,故開發新型替代能源與清潔永續的再生能源成為各國政府積極推行的首要政策。含油微藻之油脂取出後所剩之有機廢棄物尚含有相當比例的醣類,可為製造醇酮液體燃料之原料,如乙醇、丁醇、丙酮等,其中尤以生質丁醇(Biobutanol)逐漸受到重視。本研究的目的便是利用Clostridium acetobutylicum 的特性,回收微藻殘渣中有機物質作為ABE發酵的原料,並試驗不同的反應條件以提升丁醇產量。
    本研究以經過2% 硫酸及2% 氫氧化鈉水解的微藻殘渣作為基質進行批次實驗。結果顯示,起始碳水化合物濃度大於30 g/L時即對菌種產生抑制現象,而使用 fed-batch 程序可有效去除基質的抑制效果,並使丁醇產量達8.83 g/L。在添加不同濃度丁酸的批次中,25 g/L 碳水化合物添加15 g/L 的丁酸有較佳的丁醇產率0.192 g-butanol/g-carbohydrogen。另外,先將殘渣提供產氫菌利用產製氫氣及丁酸,此丁酸再添加於ABE發酵當中;結果顯示,添加4.5 g/L 產氫出流之丁酸可使丁醇產率提升108%。而利用甲烷厭氧發酵回收微藻殘渣的批次實驗中,提供一階段反應程序20 g/L已水解殘渣有最好的產氣表現,氫氣及甲烷的產率分別是59 mL/g-OMR及243 mL/g-OMR。本研究中,一階段甲烷發酵有最佳的能源轉換效率10.43 kJ/g-OMR;ABE發酵添加4.5 g/L產氫出流之丁酸有最佳的能源轉換速率0.676 kJ/g-OMR/day。本研究發現Clostridium acetobutylicum可有效利用微藻殘渣,透過調整操作條件可進一步提升丁醇的產量及產率。

    Since industrial resolution, fossil fuels supply most of the energy demand all over the world, which will be limited in the next few decades. The renewable energy becomes more and more important. During biodiesel extraction, the residues containing half of carbohydrate are usually remained which is the potential energy source that can be utilized. Therefore, this study has focused on the energy recovery from oil-extracted microalgae residues (OMR).
    ABE fermentation carried out by Clostridium acetobutylicum was applied to treat the OMR. Bacteria could be inhibited when initial carbohydrate was higher than 30 g/L. Fed-batch process could eliminate the inhibitory effect by substrate and butanol production reached 8.83 g/L. Addition of 15 g/L butyrate to carbohydrate obtained the maximum butanol yield 0.192 g-butanol/g-carbohydrogen. On the other hand, OMR was fed to hydrogen producing bacteria to produce hydrogen and butyrate. This 4.5 g/L of biological butyrate was added to ABE fermentation and promoted the butanol yield about 108%. OMR was also fed to CH4 fermentation that one-stage process with 20 g/L pretreated OMR obtained the best performance. The yield of H2 and CH4 were 59 mL/g-OMR and 243 mL/g-OMR, respectively. The one-stage process of CH4 fermentation had the maximum energy generation 10.43 kJ/g-OMR. The ABE fermentation with 4.5 g/L biological butyrate addition obtained maximum energy generation rate 0.676 kJ/g-OMR/day. Results indicate that Clostridium acetobutylicum can utilize OMR and butanol can be enhance by appropriate operation.

    Content Abstract I 摘要 III 誌謝 V Content VII List of figures X List of tables XII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 The trend of energy utilization and renewable energy 3 2.2 Biomass energy and its production technology 5 2.2.1 Overview of biomass energy 5 2.2.2 ABE fermentation 9 2.2.3 The advantages and of biobutanol 10 2.3 Butanol producing bacteria 11 2.3.1 Clostridium acetobutylicum 13 2.3.2 Clostridium beijerinckii 13 2.3.3 Clostridium saccharoperbutlacetonicum 14 2.4 The metabolic pathway of ABE fermentation 14 2.4.1 Acidogenesis pathway 16 2.4.2 Solventogenesis pathway 16 2.4.3 Fermentation phases and the corresponding cell cycle stages 18 2.4.4 Electron and energy flow 19 2.4.5 Redox balance and stoichiometric reactions in ABE fermentation 21 2.5 Different factors on ABE fermentation 23 2.5.1 The effect of pH 23 2.5.2 The utilization of lactate 25 2.5.3 The effect of acetate 26 2.5.4 The effect of butyrate 28 2.5.5 The pH buffer solutions and nutritional factors for ABE fermentation 31 2.6 Biohydrogen and methane production 31 2.6.1 Biohydrogen production and butyrate fermentation 31 2.6.2 Methane fermentation 32 2.7 Microalgae residues as substrate for ABE fermentation 33 2.8 Enhancement of performance in ABE fermentation 37 Chapter 3 Materials and Methods 41 3.1.1 Strain and growth conditions 41 3.1.2 Medium preparation 41 3.1.3 Oil-extracted microalgae residues pretreatment 42 3.1.4 Batched fermentation experiment 43 3.1.5 Analytical methods 45 Chapter 4 Results and Discussion 47 4.1 Fermentative biobutanol test under different initial OMR concentration 49 4.2 Fermentative biobutanol test carried out by fed-batch fermentation 54 4.3 Fermentative biobutanol test under addition of butyrate 61 4.4 Addition of butyrate from hydrogen fermentation effluent for ABE fermentation 66 4.4.1 Fermentative biobutyrate test with different hydrolysis methods 66 4.4.2 Fermentative biobutanol test with biological butyrate 68 4.5 Biofuel generation from OMR in other anaerobic fermentation 72 4.5.1 Methane fermentation by feeding pretreated and untreated OMR 72 4.5.2 Two-stage process by integrating hydrogen and methane fermentation 76 4.6 Comparison of overall performance between ABE fermentation and other anaerobic fermentation 81 Chapter 5 Conclusions and Suggestions 85 5.1 Conclusions 85 5.2 Suggestions 86 Chapter 6 Reference 87   List of figures Fig. 2.1 World population growth from 1950 to 2050 3 Fig. 2.2 The trend of energy consumption. (Source: BP Energy Outlook, 2015) 4 Fig. 2.3 Global New Investment in Renewable Power and Fuels, Developed and 5 Fig. 2.4 Total world energy consumption by source in 2010 (Network, 2012) 6 Fig. 2.5 Different types of fuels obtainable from biomass (Muradov et al., 2008) 8 Fig. 2.6 Metabolic pathways of Clostridium acetobutylicum. 15 Fig. 2.7 Cell cycle of Clostridium acetobutylicum and its corresponding fermentation 19 Fig. 2.8 In vivo expression pattern of enzymes involved in carbon and electron flow in C. acetobutylicum ATCC 284. (Girbal et al., 1998) 20 Fig. 2.9 Tentative scheme of the terminal reactions in the fermentation of hexoses to butyrate, H2 and CO2 at low external pH values. Acetate formation has been left out for simplification of the scheme. A butyrate carrier (broken arrows) is considered not to be active under these conditions. (Gottwald et al., 1985) 29 Fig. 3.1 Diagram of one-stage bioprocess of CH4 fermentation applied in this study 44 Fig. 4.1 The product concentration profiles of different initial concentration of substrate test. 52 Fig. 4.2 The product concentration profiles of different substrate in bottle BK1 to BK4. 56 Fig. 4.3 The carbohydrate and product concentration profiles of different substrate in 59 Fig. 4.4 The product concentration profiles of different butyrate addition in bottle A to F. 63 Fig. 4.5 The butanol production with different concentration of butyrate addition. 64 Fig. 4.6 The product concentration profiles of butyrate fermentation and ABE fermentation with butyrate addition. 69 Fig. 4.7 The cumulative gas production in butyrate fermentation and ABE fermentation 71 Fig. 4.8 Profiles of fermentative CH4 production batch test with 20 g/L pretreated OMR. 74 Fig. 4.9 Profiles of fermentative CH4 production batch test with 20 g/L pretreated OMR. 75 Fig. 4.10 Profiles of two-stage process of hydrogen and methane fermentation with 30 g/L 78   List of tables Table 2.1.1 Main renewable energy sources and their usage forms (Demirbaş, 2006) 5 Table 2.2.1 Options for biomass energy with different biomass resource (Rittmann, 2008) 7 Table 2.3.1 Species for ABE fermentation in different studies 13 Table 2.4.1 Stoichiometric reactions for Clostridium acetobutylicum (water and proton 22 Table 2.5.1 Three different stable metabolic state under different pH and conditions (Girbal et al., 1998) 24 Table 2.5.2 Acetate and glucose as co-substrate and pH for ABE fermentation 27 Table 2.5.3 Butyrate and glucose as co-substrate and pH for ABE fermentation 30 Table 2.7.1 Butanol fermentation from organic wastes by Clostridium sp. 36 Table 2.8.1 Different fermentation processes and performances of ABE fermentation 39 Table 4.1 Basic analysis of oil-extracted microalgae residues slurry........................48 Table 4.2 Detectable sugars from oil-extracted microalgae residues........................48 Table 4.1.1 The condition of different initial concentration of substrate test 49 Table 4.1.2 The production and yield of butanol and acids in different initial substrate test 53 Table 4.2.1 The condition of different substrate addition fed-batch test 55 Table 4.2.2 The production and yield of butanol and acids in contrast set 57 Table 4.2.3 The maximum butanol production and maximum butanol yield in fed-batch test 60 Table 4.3.1 The condition of different initial concentration of butyrate addition test 61 Table 4.3.2 The production and yield of solvent under different butyrate addition test 65 Table 4.4.1 The concentration of COD, carbohydrate and the fermentation results with different hydrolysis methods 67 Table 4.4.2 The condition of butyrate fermentation and the ABE fermentation with butyrate addition 68 Table 4.4.3 The production and yield of solvent and acid with butyrate addition from different source 70 Table 4.5.1 Methane, hydrogen yield and COD removal of one-stage and two-stage process 80 Table 4.6.1 Performance of ABE, H2 and CH4 production as well as energy generation 82

    陳觀賜 (2014). Study of utilizing microalgae residues for butanol production by Clostridium acetobutylicum. 環境工程學系, 國立成功大學. 碩士論文

    Abbasi, T. and S. Abbasi (2010) "Biomass energy and the environmental impacts associated with its production and utilization." Renewable and Sustainable Energy Reviews 14(3): 919-937.

    Adsul, M., J. Ghule, R. Singh, H. Shaikh, K. Bastawde, D. Gokhale and A. Varma (2004) "Polysaccharides from bagasse: applications in cellulase and xylanase production." Carbohydrate Polymers 57(1): 67-72.

    Afschar, A., H. Biebl, K. Schaller and K. Schügerl (1985) "Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle." Applied microbiology and biotechnology 22(6): 394-398.

    Ahn, J.-H., B.-I. Sang and Y. Um (2011) "Butanol production from thin stillage using< i> Clostridium pasteurianum</i>." Bioresource Technology 102(7): 4934-4937.

    Al-Shorgani, N. K. N., M. S. Kalil and W. M. W. Yusoff (2012) "Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4." Bioprocess and biosystems engineering 35(5): 817-826.

    Andersch, W., H. Bahl and G. Gottschalk (1983) "Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum." European journal of applied microbiology and biotechnology 18(6): 327-332.

    Andrade, J. C. and I. Vasconcelos (2003) "Continuous cultures of Clostridium acetobutylicum: culture stability and low-grade glycerol utilisation." Biotechnology Letters 25(2): 121-125.

    Angelidaki, I. and B. Ahring (1993) "Thermophilic anaerobic digestion of livestock waste: the effect of ammonia." Applied microbiology and biotechnology 38(4): 560-564.

    Badr, H., R. Toledo and M. Hamdy (2001) "Continuous acetone–ethanol–butanol fermentation by immobilized cells of Clostridium acetobutylicum." Biomass and Bioenergy 20(2): 119-132.

    Bahl, H., W. Andersch and G. Gottschalk (1982) "Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat." European journal of applied microbiology and biotechnology 15(4): 201-205.

    Bahl, H., M. Gottwald, A. Kuhn, V. Rale, W. Andersch and G. Gottschalk (1986) "Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum." Applied and environmental microbiology 52(1): 169-172.

    Beesch, S. C. (1953) "Acetone-butanol fermentation of starches." Applied microbiology 1(2): 85.

    Berezina, O., N. Zakharova, C. Yarotsky and V. Zverlov (2012) "Microbial producers of butanol." Applied biochemistry and microbiology 48(7): 625-638.

    Bhat, J. and H. Barker (1947) "Clostridium lacto-acetophilum nov. spec. and the role of acetic acid in the butyric acid fermentation of lactate." Journal of bacteriology 54(3): 381.

    Blonskaja, V., A. Menert and R. Vilu (2003) "Use of two-stage anaerobic treatment for distillery waste." Advances in Environmental Research 7(3): 671-678.

    Brosseau, J. D. and J. Zajic (1982) "Hydrogen‐gas production with Citrobacter intermedim and Clostridium pasteurianum." Journal of Chemical Technology and Biotechnology 32(3): 496-502.

    Buswell, A. and H. Mueller (1952) "Mechanism of methane fermentation." Industrial & Engineering Chemistry 44(3): 550-552.

    Chen, C.-K. and H. Blaschek (1999) "Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101." Applied microbiology and biotechnology 52(2): 170-173.

    Chen, C.-Y., X.-Q. Zhao, H.-W. Yen, S.-H. Ho, C.-L. Cheng, D.-J. Lee, F.-W. Bai and J.-S. Chang (2013) "Microalgae-based carbohydrates for biofuel production." Biochemical engineering journal 78: 1-10.

    Chen, C., C. Lin and J. Chang (2001) "Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate." Applied microbiology and biotechnology 57(1-2): 56-64.

    Cheng, C.-L., P.-Y. Che, B.-Y. Chen, W.-J. Lee, L.-J. Chien and J.-S. Chang (2012) "High yield bio-butanol production by solvent-producing bacterial microflora." Bioresource Technology 113: 58-64.

    Cheng, H.-H., L.-M. Whang, K.-C. Chan, M.-C. Chung, S.-H. Wu, C.-P. Liu, S.-Y. Tien, S.-Y. Chen, J.-S. Chang and W.-J. Lee (2014) "Biological Butanol Production from microalgae-based biodiesel residues by Clostridium acetobutylicum." Bioresource Technology.

    Cheng, H.-H., L.-M. Whang, C.-W. Wu and M.-C. Chung (2012) "A two-stage bioprocess for hydrogen and methane production from rice straw bioethanol residues." Bioresource Technology 113: 23-29.

    Chisti, Y. (2007) "Biodiesel from microalgae." Biotechnology advances 25(3): 294-306.

    Chisti, Y. (2008) "Biodiesel from microalgae beats bioethanol." Trends in Biotechnology 26(3): 126-131.

    Conte, M. V. and R. S. Pore (1973) "Taxonomic implications of Prototheca and Chlorella cell wall polysaccharide characterization." Archiv für Mikrobiologie 92(3): 227-233.

    Cooney, M., N. Maynard, C. Cannizzaro and J. Benemann (2007) "Two-phase anaerobic digestion for production of hydrogen–methane mixtures." Bioresource Technology 98(14): 2641-2651.

    Dürre, P. (1998) "New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation." Applied microbiology and biotechnology 49(6): 639-648.

    Dürre, P. (2007) "Biobutanol: an attractive biofuel." Biotechnology journal 2(12): 1525-1534.

    Dabrock, B., H. Bahl and G. Gottschalk (1992) "Parameters affecting solvent production by Clostridium pasteurianum." Applied and environmental microbiology 58(4): 1233-1239.

    Datar, R., J. Huang, P.-C. Maness, A. Mohagheghi, S. Czernik and E. Chornet (2007) "Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process." International Journal of Hydrogen Energy 32(8): 932-939.

    Demirbaş, A. (2006) "Global renewable energy resources." Energy sources 28(8): 779-792.

    Desai, R. P., L. M. Harris, N. E. Welker and E. T. Papoutsakis (1999) "Metabolic Flux Analysis Elucidates the Importance of the Acid-Formation Pathways in Regulating Solvent Production by< i> Clostridium acetobutylicum</i>." Metabolic engineering 1(3): 206-213.

    Diez-Gonzalez, F., J. B. Russell and J. B. Hunter (1995) "The role of an NAD-independent lactate dehydrogenase and acetate in the utilization of lactate byClostridium acetobutylicum strain P262." Archives of microbiology 164(1): 36-42.

    Ehimen, E., Z. Sun, C. Carrington, E. Birch and J. Eaton-Rye (2011) "Anaerobic digestion of microalgae residues resulting from the biodiesel production process." Applied Energy 88(10): 3454-3463.

    El Kanouni, A., I. Zerdani, S. Zaafa, M. Znassni, M. Loutfi and M. Boudouma (1998) "The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate." World Journal of Microbiology and Biotechnology 14(3): 431-435.

    Ellis, J. T., N. N. Hengge, R. C. Sims and C. D. Miller (2012) "Acetone, butanol, and ethanol production from wastewater algae." Bioresource Technology 111: 491-495.

    Ezeji, T., N. Qureshi and H. Blaschek (2004) "Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping." Applied microbiology and biotechnology 63(6): 653-658.

    Ezeji, T., N. Qureshi and H. P. Blaschek (2007) "Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation." Biotechnology and bioengineering 97(6): 1460-1469.

    Fayolle, F., R. Marchal and D. Ballerini (1990) "Effect of controlled substrate feeding on butyric acid production byClostridium tyrobutyricum." Journal of industrial microbiology 6(3): 179-183.

    Fouad, M., A. Abou-Zeid and M. Yassein (1975) "The fermentative production of acetone-butanol by Clostridium acetobutylicum." Acta Biologica Academiae Scientiarum Hungaricae 27(2-3): 107-117.

    Frick, C. and K. Schügerl (1986) "Continuous acetone-butanol production with free and immobilized Clostridium acetobutylicum." Applied microbiology and biotechnology 25(3): 186-193.

    Fridleifsson, I. B. (2001) "Geothermal energy for the benefit of the people." Renewable and Sustainable Energy Reviews 5(3): 299-312.

    Fukuzaki, S., N. Nishio, M. Shobayashi and S. Nagai (1990) "Inhibition of the fermentation of propionate to methane by hydrogen, acetate, and propionate." Applied and environmental microbiology 56(3): 719-723.

    Garcia, A., E. L. Iannotti and J. L. Fischer (1986) "Butanol fermentation liquor production and separation by reverse osmosis." Biotechnology and bioengineering 28(6): 785-791.

    Genium. (1993) "Material Safety Data Sheet for n-Butyl Alcohol." Genium Publishing Corporation. Schenectady, NY

    Girbal, L. and P. Soucaille (1998) "Regulation of solvent production in Clostridium acetobutylicum." Trends in Biotechnology 16(1): 11-16.

    Godin, C. and J. Engasser (1990) "Two-stage continuous fermentation of Clostridium acetobutylicum: effects of pH and dilution rate." Applied microbiology and biotechnology 33(3): 269-273.

    Goldemberg, J. (2007) "Ethanol for a sustainable energy future." Science 315(5813): 808-810.

    Gottschal, J. and J. Morris (1981) "Non-production of acetone and butanol by Clostridium acetobutylicum during glucose-and ammonium-limitation in continuous culture." Biotechnology Letters 3(9): 525-530.

    Gottwald, M. and G. Gottschalk (1985) "The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation." Archives of microbiology 143(1): 42-46.

    Hüsemann, M. and E. T. Papoutsakis (1990) "Effects of propionate and acetate additions on solvent production in batch cultures of Clostridium acetobutylicum." Applied and environmental microbiology 56(5): 1497-1500.

    Hüsemann, M. H. and E. T. Papoutsakis (1988) "Solventogenesis in Clostridium acetobutylicum fermentations related to carboxylic acid and proton concentrations." Biotechnology and bioengineering 32(7): 843-852.

    Hartmanis, M. G., T. Klason and S. Gatenbeck (1984) "Uptake and activation of acetate and butyrate in Clostridium acetobutylicum." Applied microbiology and biotechnology 20(1): 66-71.

    Harun, R., M. Singh, G. M. Forde and M. K. Danquah (2010) "Bioprocess engineering of microalgae to produce a variety of consumer products." Renewable and Sustainable Energy Reviews 14(3): 1037-1047.

    Hawkes, F. R., I. Hussy, G. Kyazze, R. Dinsdale and D. L. Hawkes (2007) "Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress." International Journal of Hydrogen Energy 32(2): 172-184.

    Herbert, D., P. Philipps and R. Strange (1971) "Carbohydrate analysis." Methods Enzymol. B 5: 265-277.

    Herrero, A. A. (1983) "End-product inhibition in anaerobic fermentations." Trends in Biotechnology 1(2): 49-53.

    Herrero, A. A., R. F. Gomez, B. Snedecor, C. J. Tolman and M. F. Roberts (1985) "Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids." Applied microbiology and biotechnology 22(1): 53-62.

    Hills, D. J. (1979) "Effects of carbon: nitrogen ratio on anaerobic digestion of dairy manure." Agricultural wastes 1(4): 267-278.

    Hu, B. and S. Chen (2007) "Pretreatment of methanogenic granules for immobilized hydrogen fermentation." International Journal of Hydrogen Energy 32(15): 3266-3273.

    Huang, G., F. Chen, D. Wei, X. Zhang and G. Chen (2010) "Biodiesel production by microalgal biotechnology." Applied Energy 87(1): 38-46.

    Huang, W.-C., D. E. Ramey and S.-T. Yang (2004). Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO, Springer.

    Illman, A., A. Scragg and S. Shales (2000) "Increase in Chlorella strains calorific values when grown in low nitrogen medium." Enzyme and microbial technology 27(8): 631-635.

    Jain, A. K. and A. Suhane (2013) "Biotechnology: A way to Control Environmental Pollution by Alternative Lubricants." Research in Biotechnology 4(3).

    Jang, Y.-S., A. Malaviya, C. Cho, J. Lee and S. Y. Lee (2012) "Butanol production from renewable biomass by clostridia." Bioresource Technology 123: 653-663.

    Jernigan, A., M. May, T. Potts, B. Rodgers, J. Hestekin, P. I. May, J. McLaughlin, R. R. Beitle and C. Hestekin (2013) "Effects of drying and storage on year‐round production of butanol and biodiesel from algal carbohydrates and lipids using algae from water remediation." Environmental Progress & Sustainable Energy 32(4): 1013-1022.

    Jiang, L., J. Wang, S. Liang, X. Wang, P. Cen and Z. Xu (2009) "Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses." Bioresource Technology 100(13): 3403-3409.

    Jo, J. H., D. S. Lee, D. Park and J. M. Park (2008) "Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process." Bioresource Technology 99(14): 6666-6672.

    Johnson, M., W. Peterson and E. Fred (1931) "Oxidation and reduction relations between substrate and products in the acetonebutyl alcohol fermentation." Journal of Biological Chemistry 91(2): 569-591.

    Jones, D., A. Van der Westhuizen, S. Long, E. Allcock, S. Reid and D. Woods (1982) "Solvent production and morphological changes in Clostridium acetobutylicum." Applied and environmental microbiology 43(6): 1434-1439.

    Jones, D. T. and D. R. Woods (1986) "Acetone-butanol fermentation revisited." Microbiological reviews 50(4): 484.

    Jung, K.-W., D.-H. Kim and H.-S. Shin (2011) "Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions." Bioresource Technology 102(3): 2745-2750.

    Jungermann, K., R. Thauer, G. Leimenstoll and K. Decker (1973) "Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia." Biochimica et Biophysica Acta (BBA)-Bioenergetics 305(2): 268-280.

    Keis, S., R. Shaheen and D. T. Jones (2001) "Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov." International journal of systematic and evolutionary microbiology 51(6): 2095-2103.

    Khanal, S. K., W.-H. Chen, L. Li and S. Sung (2004) "Biological hydrogen production: effects of pH and intermediate products." International Journal of Hydrogen Energy 29(11): 1123-1131.

    Kim, B. H., P. Bellows, R. Datta and J. Zeikus (1984) "Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields." Applied and environmental microbiology 48(4): 764-770.

    Kim, B. H. and J. Zeikus (1984) "Importance of hydrogen metabolism in regulation of solventogenesis by Clostridium acetobutylicum." Developments in industrial microbiology 26: 549-556.

    Kim, M.-S., J.-S. Baek, Y.-S. Yun, S. J. Sim, S. Park and S.-C. Kim (2006) "Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation." International Journal of Hydrogen Energy 31(6): 812-816.

    Koster, I. and G. Lettinga (1984) "The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge." Agricultural wastes 9(3): 205-216.

    Kraemer, J. T. and D. M. Bagley (2005) "Continuous fermentative hydrogen production using a two-phase reactor system with recycle." Environmental science & technology 39(10): 3819-3825.

    Kumar, P., D. M. Barrett, M. J. Delwiche and P. Stroeve (2009) "Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production." Industrial & Engineering Chemistry Research 48(8): 3713-3729.

    Lütke-Eversloh, T. and H. Bahl (2011) "Metabolic engineering of Clostridium acetobutylicum</i>: recent advances to improve butanol production." Current opinion in biotechnology 22(5): 634-647.

    Lai, M.-C. and R. W. Traxler (1994) "A coupled two-stage continuous fermentation for solvent production by Clostridium acetobutylicum." Enzyme and microbial technology 16(12): 1021-1025.

    Lay, J. J. (2001) "Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose." Biotechnology and bioengineering 74(4): 280-287.

    Lee, H.-S., M. B. Salerno and B. E. Rittmann (2008) "Thermodynamic evaluation on H2 production in glucose fermentation." Environmental science & technology 42(7): 2401-2407.

    Lee, H. S., R. Krajmalinik‐Brown, H. Zhang and B. E. Rittmann (2009) "An electron‐flow model can predict complex redox reactions in mixed‐culture fermentative BioH2: Microbial ecology evidence." Biotechnology and bioengineering 104(4): 687-697.

    Li, L., H. Ai, S. Zhang, S. Li, Z. Liang, Z.-Q. Wu, S.-T. Yang and J.-F. Wang (2013) "Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum." Bioresource Technology 143: 397-404.

    Li, Q., H. Cai, B. Hao, C. Zhang, Z. Yu, S. Zhou and L. Chenjuan (2010) "Enhancing Clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel." Applied biochemistry and biotechnology 162(8): 2381-2386.

    Li, S.-Y., R. Srivastava, S. L. Suib, Y. Li and R. S. Parnas (2011) "Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control." Bioresource Technology 102(5): 4241-4250.

    Lienhardt, J., J. Schripsema, N. Qureshi and H. P. Blaschek (2002) "Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor." Applied biochemistry and biotechnology 98(1-9): 591-598.

    Lin, C.-Y. and C. Lay (2004) "Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora." International Journal of Hydrogen Energy 29(3): 275-281.

    Liu, D., Y. Chen, A. Li, F. Ding, T. Zhou, Y. He, B. Li, H. Niu, X. Lin and J. Xie (2013) "Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption." Bioresource Technology 129: 321-328.

    Liu, D., D. Liu, R. J. Zeng and I. Angelidaki (2006) "Hydrogen and methane production from household solid waste in the two-stage fermentation process." Water research 40(11): 2230-2236.

    Liu, G. and J. Shen (2004) "Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria." Journal of bioscience and bioengineering 98(4): 251-256.

    Liu, I.-C., L.-M. Whang, W.-J. Ren and P.-Y. Lin (2011) "The effect of pH on the production of biohydrogen by clostridia: thermodynamic and metabolic considerations." International Journal of Hydrogen Energy 36(1): 439-449.

    Lu, C., J. Zhao, S.-T. Yang and D. Wei (2012) "Fed-batch fermentation for butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping." Bioresource Technology 104: 380-387.

    Madihah, M., A. Ariff, K. Sahaid, A. Suraini and M. Karim (2001) "Direct fermentation of gelatinized sago starch to acetone–butanol–ethanol by Clostridium acetobutylicum." World Journal of Microbiology and Biotechnology 17(6): 567-576.

    Martin, J., H. Petitdemange, J. Ballongue and R. Gay (1983) "Effects of acetic and butyric acids on solvents production by Clostridium acetobutylicum." Biotechnology Letters 5(2): 89-94.

    Matsumoto, M. and Y. Nishimura (2007) "Hydrogen production by fermentation using acetic acid and lactic acid." Journal of bioscience and bioengineering 103(3): 236-241.

    Mermelstein, L. D., E. T. Papoutsakis, D. J. Petersent and G. N. Bennett (1993) "Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increase solvent production by enhancement of acetone formation enzyme-activities using a synthetic acetone operon." Biotechnology and bioengineering 42(9): 1053-1060.

    Michel-Savin, D., R. Marchal and J. Vandecasteele (1990) "Control of the selectivity of butyric acid production and improvement of fermentation performance withClostridium tyrobutyricum." Applied microbiology and biotechnology 32(4): 387-392.

    Monich, J. A. (1968) "Alcohols: Their Chemistry, Properties, and Manufacture" Environmental Health Criteria monograph No.65, Geneva: World Health Organization

    Miranda, J., P. C. Passarinho and L. Gouveia (2012) "Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production." Bioresource Technology 104: 342-348.

    Momirlan, M. and T. N. Veziroglu (2005) "The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet." International Journal of Hydrogen Energy 30(7): 795-802.

    Monot, F., J.-M. Engasser and H. Petitdemange (1984) "Influence of pH and undissociated butyric acid on the production of acetone and butanol in batch cultures of Clostridium acetobutylicum." Applied microbiology and biotechnology 19(6): 422-426.

    Monot, F. and J. Engasser (1983) "Production of acetone and butanol by batch and continuous culture of Clostridium acetobutylicum under nitrogen limitation." Biotechnology Letters 5(4): 213-218.

    Monot, F., J.-R. Martin, H. Petitdemange and R. Gay (1982) "Acetone and butanol production by Clostridium acetobutylicum in a synthetic medium." Applied and environmental microbiology 44(6): 1318-1324.

    Muradov, N. Z. and T. N. Veziroğlu (2008) "“Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies." International Journal of Hydrogen Energy 33(23): 6804-6839.

    Mwangi, J. K., W.-J. Lee, L.-M. Whang, T. S. Wu, W.-H. Chen, J.-S. Chang, C.-Y. Chen and C.-L. Chen (2015) "Microalgae Oil: Algae Cultivation and Harvest, Algae Residue Torrefaction and Diesel Engine Emissions Tests." Aerosol and Air Quality Research 15: 81-98.

    Nakas, J., M. Schaedle, C. Parkinson, C. Coonley and S. Tanenbaum (1983) "System development for linked-fermentation production of solvents from algal biomass." Applied and environmental microbiology 46(5): 1017-1023.

    Naylor, R. L., A. J. Liska, M. B. Burke, W. P. Falcon, J. C. Gaskell, S. D. Rozelle and K. G. Cassman (2007) "The ripple effect: biofuels, food security, and the environment." Environment: Science and Policy for Sustainable Development 49(9): 30-43.

    Network (2012), R. E. P. Renewables 2012–Global Status Report Paris: REN21 Secretariat.

    Network (2014), R. E. P. Renewables 2014–Global Status Report

    Network (2015), BP Energy Outlook 2035 booklet, February 2015

    Ni, Y. and Z. Sun (2009) "Recent progress on industrial fermentative production of acetone–butanol–ethanol by Clostridium acetobutylicum in China." Applied microbiology and biotechnology 83(3): 415-423.

    Northcote, D., K. Goulding and R. Horne (1958) "The chemical composition and structure of the cell wall of Chlorella pyrenoidosa." Biochemical Journal 70(3): 391.

    Oshiro, M., K. Hanada, Y. Tashiro and K. Sonomoto (2010) "Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum." Applied microbiology and biotechnology 87(3): 1177-1185.

    Pan, X., D. Xie, N. Gilkes, D. J. Gregg and J. N. Saddler (2005). Strategies to enhance the enzymatic hydrolysis of pretreated softwood with high residual lignin content. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, Springer.

    Papoutsakis, E. T. (1984) "Equations and calculations for fermentations of butyric acid bacteria." Biotechnology and bioengineering 26(2): 174-187.

    Party, I. R. E. W. (2002) "Renewable Energy–into the mainstream." Sittard: Novem, Netherlands.–2002.–54 p.

    Petitdemange, H., C. Cherrier, G. Raval and R. Gay (1976) "Regulation of the NADH and NADPH-ferredoxin oxidoreductases in clostridia of the butyric group." Biochimica et Biophysica Acta (BBA)-General Subjects 421(2): 334-347.

    Potts, T., J. Du, M. Paul, P. May, R. Beitle and J. Hestekin (2012) "The production of butanol from Jamaica bay macro algae." Environmental Progress & Sustainable Energy 31(1): 29-36.

    Prescott, S. and C. Dunn (1959) "The acetone-butanol fermentation." Industrial microbiology, 3rd ed. McGraw-Hill Book Co., New York: 250-284.

    Qureshi, N. and H. Blaschek (2000) "Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA101." Food and bioproducts processing 78(3): 139-144.

    Qureshi, N., X. L. Li, S. Hughes, B. C. Saha and M. A. Cotta (2006) "Butanol production from corn fiber xylan using Clostridium acetobutylicum." Biotechnology progress 22(3): 673-680.

    Qureshi, N., A. Lolas and H. Blaschek (2001) "Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101." Journal of industrial Microbiology and Biotechnology 26(5): 290-295.

    Qureshi, N., B. C. Saha and M. A. Cotta (2007) "Butanol production from wheat straw hydrolysate using Clostridium beijerinckii." Bioprocess and biosystems engineering 30(6): 419-427.

    Rakopoulos, D., C. Rakopoulos, E. Giakoumis, A. Dimaratos and D. Kyritsis (2010) "Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine." Energy Conversion and Management 51(10): 1989-1997.

    Ramey, D. and S.-T. Yang (2004) "Production of butyric acid and butanol from biomass." final report to the US Department of Energy, Contract No.: DE-F-G02-00ER86106.

    Reith, J., R. H. Wijffels and H. Barten (2003). Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production, Dutch Biological Hydrogen Foundation.

    Rittmann, B. E. (2008) "Opportunities for renewable bioenergy using microorganisms." Biotechnology and bioengineering 100(2): 203-212.

    Rittmann, B. E. and P. L. McCarty (2012). Environmental biotechnology: principles and applications, Tata McGraw-Hill Education.

    Roos, J. W., J. K. McLaughlin and E. T. Papoutsakis (1985) "The effect of pH on nitrogen supply, cell lysis, and solvent production in fermentations of Clostridium acetobutylicum." Biotechnology and bioengineering 27(5): 681-694.

    Schuster, K. C., R. Van Den Heuvel, N. Gutierrez and I. Maddox (1998) "Development of markers for product formation and cell cycle in batch cultivation of Clostridium acetobutylicum ATCC 824." Applied microbiology and biotechnology 49(6): 669-676.

    Sialve, B., N. Bernet and O. Bernard (2009) "Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable." Biotechnology advances 27(4): 409-416.

    SIDS Initial Assessment Report April (2005), Geneva: United Nations Environment Programme.

    Simon, E. (1947) "The formation of lactic acid by Clostridium acetobutylicum (Weizmann)." Archives of biochemistry 13(2): 237.

    Song, J.-H., J.-R. Ventura, C.-H. Lee and D. Jahng (2011) "Butyric acid production from brown algae using Clostridium tyrobutyricum ATCC 25755." Biotechnology and Bioprocess Engineering 16(1): 42-49.

    Stadtman, T. C. and H. Barker (1951) "STUDIES ON THE METHANE FERMENTATION IX.: The Origin of Methane in the Acetate and Methanol Fermentations by Methanosarcina1." Journal of bacteriology 61(1): 81.

    Symons, G. and A. Buswell (1933) "The methane fermentation of carbohydrates1, 2." Journal of the American Chemical Society 55(5): 2028-2036.

    Takeda, H. and T. Hirokawa (1978) "Studies on the cell wall of Chlorella I. Quantitative changes in cell wall polysaccharides during the cell cycle of Chlorella ellipsoidea." Plant and cell physiology 19(4): 591-598.

    Talukder, M. M. R., P. Das and J. C. Wu (2012) "Microalgae (Nannochloropsis salina) biomass to lactic acid and lipid." Biochemical engineering journal 68: 109-113.

    Tanisho, S. and Y. Ishiwata (1994) "Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes." International Journal of Hydrogen Energy 19(10): 807-812.

    Tarvin, D. and A. Buswell (1934) "The Methane Fermentation of Organic Acids and Carbohydrates1, 2." Journal of the American Chemical Society 56(8): 1751-1755.

    Tashiro, Y., H. Shinto, M. Hayashi, S.-i. Baba, G. Kobayashi and K. Sonomoto (2007) "Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen." Journal of bioscience and bioengineering 104(3): 238-240.

    Tashiro, Y., K. Takeda, G. Kobayashi and K. Sonomoto (2005) "High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding." Journal of biotechnology 120(2): 197-206.

    Tashiro, Y., K. Takeda, G. Kobayashi, K. Sonomoto, A. Ishizaki and S. Yoshino (2004) "High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method." Journal of bioscience and bioengineering 98(4): 263-268.

    Terracciano, J. S. and E. R. Kashket (1986) "Intracellular conditions required for initiation of solvent production by Clostridium acetobutylicum." Applied and environmental microbiology 52(1): 86-91.

    Thang, V. H., K. Kanda and G. Kobayashi (2010) "Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4." Applied biochemistry and biotechnology 161(1-8): 157-170.

    Thauer, R. K., K. Jungermann and K. Decker (1977) "Energy conservation in chemotrophic anaerobic bacteria." Bacteriological reviews 41(1): 100.

    Tran, D.-T., K.-L. Yeh, C.-L. Chen and J.-S. Chang (2012) "Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase." Bioresource Technology 108: 119-127.

    Valentine, R. and R. Wolfe (1960) "Purification and role of phosphotransbutyrylase." Journal of Biological Chemistry 235(7): 1948-1952.

    van der Wal, H., B. L. Sperber, B. Houweling-Tan, R. R. Bakker, W. Brandenburg and A. M. López-Contreras (2013) "Production of acetone, butanol, and ethanol from biomass of the green seaweed< i> Ulva lactuca</i>." Bioresource Technology 128: 431-437.

    Ventura, J.-R. and D. Jahng (2013) "Improvement of butanol fermentation by supplementation of butyric acid produced from a brown alga." Biotechnology and Bioprocess Engineering 18(6): 1142-1150.

    Ventura, J.-R. S., H. Hu and D. Jahng (2013) "Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes." Applied microbiology and biotechnology 97(16): 7505-7516.

    Vollherbst-Schneck, K., J. Sands and B. Montenecourt (1984) "Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824." Applied and environmental microbiology 47(1): 193-194.

    Waksman, S. A. and D. Kirsh (1933) "Butyric Acid and Butyl Alcohol Fermentation of Hemicellulose-and Starch-Rich Materials." Industrial & Engineering Chemistry 25(9): 1036-1041.

    Walton, M. and J. Martin (1979). Production of butanol-acetone by fermentation, Academic Press.

    Wang, G. and D. I. Wang (1984) "Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum." Applied and environmental microbiology 47(2): 294-298.

    Wang, X., G. Yang, Y. Feng, G. Ren and X. Han (2012) "Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw." Bioresource Technology 120: 78-83.

    Wiegel, J., S.-U. Kuk and G. W. Kohring (1989) "Clostridium thermobutyricum sp. nov., a moderate thermophile isolated from a cellulolytic culture, that produces butyrate as the major product." International Journal of Systematic Bacteriology 39(2): 199-204.

    Wiesenborn, D. P., F. B. Rudolph and E. T. Papoutsakis (1988) "Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents." Applied and environmental microbiology 54(11): 2717-2722.

    Wijffels, R. H. and M. J. Barbosa (2010) "An outlook on microalgal biofuels." Science(Washington) 329(5993): 796-799.

    Wood, H., R. Brown and C. Werkman (1945) "Mechanism of the butyl alcohol fermentation with heavy carbon acetic and butyric acids and acetone." Archives of biochemistry 6(2): 243-260.

    Woolford, M. (1984) "The chemistry of silage." The silage fermentation. Marcel Dekker, New York: 71-133.

    Yamada, T. and K. Sakaguchi (1982) "Comparative studies onChlorella cell walls: Induction of protoplast formation." Archives of microbiology 132(1): 10-13.

    Yang, Z., R. Guo, X. Xu, X. Fan and S. Luo (2011) "Hydrogen and methane production from lipid-extracted microalgal biomass residues." International Journal of Hydrogen Energy 36(5): 3465-3470.

    Yao, M., H. Wang, Z. Zheng and Y. Yue (2010) "Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions." Fuel 89(9): 2191-2201.

    Yen, H.-W. and D. E. Brune (2007) "Anaerobic co-digestion of algal sludge and waste paper to produce methane." Bioresource Technology 98(1): 130-134.

    Yerushalmi, L., B. Volesky, W. Leung and R. Neufeld (1983) "Variations of solvent yield in acetone-butanol fermentation." European journal of applied microbiology and biotechnology 18(5): 279-286.

    Zehnder, A. J., B. A. Huser, T. D. Brock and K. Wuhrmann (1980) "Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium." Archives of microbiology 124(1): 1-11.

    Zhang, T. C. and T. Noike (1991) "Comparison of one-phase and two-phase anaerobic digestion processes in characteristics of substrate degradation and bacterial population levels." Water Science & Technology 23(7-9): 1157-1166.

    Zhao, B., J. Ma, Q. Zhao, L. Laurens, E. Jarvis, S. Chen and C. Frear (2014) "Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production." Bioresource Technology 161: 423-430.

    Zheng, Y.-N., L.-Z. Li, M. Xian, Y.-J. Ma, J.-M. Yang, X. Xu and D.-Z. He (2009) "Problems with the microbial production of butanol." Journal of industrial microbiology & biotechnology 36(9): 1127-1138.

    Zhu, J. and X. Pan (2010) "Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation." Bioresource Technology 101(13): 4992-5002.

    Zhu, Y., Z. Wu and S.-T. Yang (2002) "Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor." Process Biochemistry 38(5): 657-666.

    Zverlov, V., O. Berezina, G. Velikodvorskaya and W. Schwarz (2006) "Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery." Applied microbiology and biotechnology 71(5): 587-597.

    下載圖示 校內:2020-08-05公開
    校外:2020-08-05公開
    QR CODE