| 研究生: |
黃彥鈞 Huang, Yan-Jyun |
|---|---|
| 論文名稱: |
寬度及水砂比影響水下辮狀河道演化之研究 : 實驗與水流模式開發 Study of Submarine Braided Channels in response to Channel Width and Inflow to Sediment Ratio : Experiments and Modeling |
| 指導教授: |
賴悅仁
Lai, Yueh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 水下辮狀河道 、異重流 、寬度效應 、水砂比 、河道自動化分析 、數位影像處理 、Topo Toolbox |
| 外文關鍵詞: | Submarine braided channel, Density currents, Channel width, Topo Toolbox |
| 相關次數: | 點閱:122 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用小尺度的三維動床水槽,探討水下辮狀河道受寬度限制與水砂比差異之形貌演化發展,也是首次對於水下辮狀河道進行寬度差異分析比較的實驗。從研究的結果顯示,寬度效應與水砂比差異均是左右水下辮狀河道發展的變因之一,但也發現兩者似乎分別從不同的角度切入去影響水下辮狀河道的演化與發展。從定性的觀察中發現,寬度效應主導了水下辮狀河道的演化機制,而水砂比差異則影響水下辮狀形貌的發展程度,且在寬度效應與水砂比差異的共同影響下,寬度效應對於水下辮狀河道整體的形貌發展有更顯著的影響力。此外,在許多定量分析的結果均表示,水下辮狀河道與陸上辮狀河道間存在相似的趨勢,再次確定水下辮狀河道與陸上辮狀河道的相似性。
最後,對於在實驗室中無法取得並量測的水下異重流流量,本研究透過對無限方向演算法進行修正並結合Topo Toolbox進行水流累積模擬,除了可以模擬異重流於當下數值高程模型中的流路外,也能透過加總任一橫斷面上的流量,取得異重流的流量資料,但仍缺乏全域實際流量分布之資料佐證。
In this study, we used small-scaled physical model to observe the evolution of the submarine braided channel morphology that is limited by the initial channel width and inflow to sediment ratio. It is also the first experiment to compare the difference of the submarine braided channel width. The results show that all of the difference channel width and inflow to sediment ratio affect the development of submarine braided channel in different ways.
From the quantitative results, we found that the channel width dominates the evolution of the submarine braided channel, and the inflow to sediment ratio affects the development of the submarine braided channel morphology. Under the common influence of channel width and inflow to sediment ratio, the channel width has a more significant influence on the overall development of the submarine braided channel.
In addition, the results of quantitative analysis indicate that there are similarity between submarine braided channel and braided channel, so we can compare the similarity between them.
Finally, we modified the flow algorithm and combined it with Topo Toolbox to simulate the flow path of density currents and predict the discharge in any cross section, but there is still lack of evidence for the actual flow distribution in the whole area.
Ashmore, P. E. (1991), How Do Gravel-Bed Rivers Braid, Can J Earth Sci, 28(3), 326-341.
Bartow, J. A. (1966), Deep Submarine Channel in Upper Miocene Orange County California, J Sediment Petrol, 36(3), 700-&.
Bertoldi, W., P. Ashmore, and M. Tubino (2009), A method for estimating the mean bed load flux in braided rivers, Geomorphology, 103(3), 330-340.
Bertoldi, W., L. Zanoni, and M. Tubino (2009), Planform dynamics of braided streams, Earth Surf Proc Land, 34(4), 547-557.
Brice JC., (1960), Index for description of channel braiding, Geological Society of America Bulletin, 71, 1833.
Deptuck, M. E., Z. Sylvester, C. Pirmez, and C. O'Byrne (2007), Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon, western Niger Delta slope, Mar Petrol Geol, 24(6-9), 406-433.
Dowdeswell, J. A., and M. Vasquez (2013), Submarine landforms in the fjords of southern Chile: implications for glacimarine processes and sedimentation in a mild glacier-influenced environment, Quaternary Sci Rev, 64, 1-19.
Egozi, R., and P. Ashmore (2008), Defining and measuring braiding intensity, Earth Surf Proc Land, 33(14), 2121-2138.
Egozi, R., and P. Ashmore (2009), Experimental analysis of braided channel pattern response to increased discharge, J Geophys Res-Earth, 114.
Flood, R. D., R. N. Hiscott, and A. E. Aksu (2009), Morphology and evolution of an anastomosed channel network where saline underflow enters the Black Sea,Sedimentology, 56(3), 807-839.
Foreman, B. Z., S. Y. J. Lai, Y. Komatsu, and C. Paola (2015), Braiding of submarine channels controlled by aspect ratio similar to rivers, Nat Geosci, 8(9), 700.
Freeman, T. G. (1991), Calculating Catchment-Area with Divergent Flow Based on a Regular Grid, Comput Geosci-Uk, 17(3), 413-422.
Gamberi, F., and M. Marani (2011), Geomorphology and Sedimentary Processes of a Modern Confined Braided Submarine Channel Belt (Stromboli Slope Valley, Southeastern Tyrrhenian Sea), J Sediment Res, 81(9-10), 686-701.
Gamberi, F., M. Rovere, and M. Marani (2011), Mass-transport complex evolution in a tectonically active margin (Gioia Basin, Southeastern Tyrrhenian Sea), Mar Geol, 279(1-4), 98-110.
Hein, F. J., and R. G. Walker (1982), The Cambro-Ordovician Cap Enrage Formation, Quebec, Canada - Conglomeratic Deposits of a Braided Submarine Channel with Terraces, Sedimentology, 29(3), 309-329.
Hong, L. B., and T. R. H. Davies (1979), Study of Stream Braiding - Summary, Geol Soc Am Bull, 90(12), 1094-1095.
Huang, A. Y. L., M. Y. F. Huang, H. Capart, and R. H. Chen (2008), Opticalmeasurements of pore geometry and fluid velocity in a bed of irregularly packed spheres, Exp Fluids, 45(2), 309-321.
Lai, S. Y. J., S. S. C. Hung, B. Z. Foreman, A. B. Limaye, J. L. Grimaud, and C. Paola (2017), Stream power controls the braiding intensity of submarine channels similarly to rivers, Geophys Res Lett, 44(10), 5062-5070.
Lindsay, J. B., and P. E. Ashmore (2002), The effects of survey frequency on estimates of scour and fill in a braided river model, Earth Surf Proc Land, 27(1), 27-43.
Parker G., (1976), On the cause and characteristic scales of meandering and braiding in rivers, Journal of Fluid Mechsnics, 76, 457-480.
Peirce, S., P. Ashmore, and P. Leduc (2018), The variability in the morphological active width: Results from physical models of gravel-bed braided rivers, Earth Surf Proc Land, 43(11), 2371-2383.
Sarma, J. N., and S. Acharjee (2018), A Study on Variation in Channel Width and Braiding Intensity of the Brahmaputra River in Assam, India, Geosciences, 8(9).
Schuurman, F., and M. G. Kleinhans (2015), Bar dynamics and bifurcation evolution in a modelled braided sand-bed river, Earth Surf Proc Land, 40(10), 1318-1333.
Schuurman, F., W. A. Marra, and M. G. Kleinhans (2013), Physics-based modeling of large braided sand-bed rivers: Bar pattern formation, dynamics, and sensitivity, J Geophys Res-Earth, 118(4), 2509-2527.
Schwanghart, W., and N. J. Kuhn (2010), TopoToolbox: A set of Matlab functions for topographic analysis, Environ Modell Softw, 25(6), 770-781.
Schwanghart, W., and D. Scherler (2014), Short Communication: TopoToolbox 2-MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf Dynam, 2(1), 1-7.
Tarboton, D. G. (1997), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour Res, 33(2), 309-319.
Wynn, R. B., B. T. Cronin, and J. Peakall (2007), Sinuous deep-water channels: Genesis, geometry and architecture, Mar Petrol Geol, 24(6-9), 341-387.
張棠羽,2019,「以實驗方法探究向下丁壩對河道形貌之影響」,成功大學水利及海洋工程研究所碩士論文,1-110。
唐高晴,2018,「河寬及水流功率影響海底辮狀河道之實驗研究」,成功大學水利及海洋工程研究所碩士論文,1-100。
洪世哲,2015,「以實驗方法探究水下受異重流影響之辮狀河道」,成功大學水利及海洋工程研究所碩士論文,1-90。
莊永忠、陳永寬,詹進發,2006,「不同流向演算法與集流閥值對數值對數值地形模型河川網路萃取之影響」, 地理研究,45期。
倪瑋傑,2005,「地形持續發展的溝渠與地下水湧出及補注」,台灣大學土木工程研究所碩士論文,1-94。
白澤生、劉竹琴,徐紅,2004,「幾種液體的折射率與其濃度關係的經驗公式」,延安大學學報(自然科學版)。