| 研究生: |
沈敏琳 Shen, Min-Lin |
|---|---|
| 論文名稱: |
利用微量元素在牙齒化石之分佈探討鈾同位素之遷移 Distribution of the Trace Elements in Fossil Teeth: Implication for Uranium Mobilization |
| 指導教授: |
游鎮烽
You, Chen-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系碩士在職專班 Department of Earth Sciences (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 牙齒化石 、國際標準品 、鈾系定年法 |
| 外文關鍵詞: | Fossil teeth, International standards, Uranium-series dating |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在第四紀的研究中,在環境及氣候變遷、人類的演進,年代學均扮演者不可或缺的串聯角色,而鈾系定年法為目前最為廣泛所使用的定年方法。利用(230Th/234U)定年可以提供45萬年的年代學記錄,而目前鈾系定年法常應用於碳酸鹽類的地質樣品,例如:珊瑚、鐘乳石,以及牙齒化石樣品。而在過去的研究中,對於牙齒化石是否適合作為定年的地質材料,目前仍有爭議,主要原因在於牙齒化石並非處於封閉系統下。因此鈾在牙齒化石中的遷移機制便顯得相當重要,經由模式的推演可以獲得校正後的年齡;目前仍然沒有一個模式可以完全說明鈾的遷移機制,可見得影響因素相當複雜。
本研究首先分析國際標準樣品,包含三個珊瑚標準樣品(RKM-4、RKM-5及JCp-1)以及三個鐘乳石標準樣品(76001、GBW04412及GBW04413),利用高解析度感應耦合電漿質譜儀(HR-ICP-MS)進行量測。在上述的標準樣品中,只有JCp-1有微量元素之定量數據,經由本研究的分析結果與過去的研究結果比較,審視儀器分析方法是否得宜,同時並建立其他標準樣品微量元素的資料庫。
在針對牙齒化石中的微量元素分佈,本研究利用雷射剝蝕系統進行牙齒化石的線性剖面掃瞄,再同樣利用高解析度感應耦合電漿質譜儀(HR-ICP-MS)進行量測,藉以瞭解牙齒化石中的元素分佈。根據Millard以及Hedges所提出的擴散吸附模式(Diffusion-Adsorption Model),鈾在不同的遷移機制下,可以推演出不同的鈾分佈情形,亦顯示是否具有代表年齡的意義,藉以評估牙齒化石的定年價值。
初步結果顯示,鈾富集於牙齒中象牙質的部分,釷在牙齒化石中的含量非常低,使得230Th對於定年結果的影響相對降低,就定年的角度來說,實為極大的優勢;而Fe、Mn、Al、Pb則富集於牙齒中黑色斑紋的區域以及裂隙的地方,顯示牙齒化石樣品可能受到些許的成岩作用影響。即使如此,從鈾的分佈曲線,在象牙質中的分佈是相當一致的,顯示鈾於牙齒化石中可能已達到飽和,具備可測得準確年齡的可能性。
In the Quaternary research, a precise chronological controlling method plays the most significant role in connecting the evolution processes of environment, climate and human being. The U-series dating is the most powerful method to apply in Quaternary, especially the radiogenic pairs of 234U and 230Th. The 234U-230Th method can be used to provide precise age up to 450 thousand years. At present, there are many geological samples dated with U-series including carbonates, corals, speleothems and fossil teeth. In order to obtain an accurate age, one has to assure all samples were in a closed system, otherwise, it is necessary to correct the artifacts by applying proper model calibration. Especially for the fossil teeth dating, it is still a series problem whether the obtained age is accurate or not. Hence, it is important to study how uranium migrated into the fossil teeth and how to create a proper model to calibrate these ages.
Aimed to check the instrumental parameters, we have analyzed several international carbonate standards, including three coral ( RKM-4、RKM-5 and JCp-1 ) and three speleothems ( 76001、GBW04412 and GBW04413 ) standards. We used standard addition method to quantify these standards using a high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). There is no trace element composition available in these standards, except for JCp-1. A comparison of JCp-1 results with previous measurements allows us to evaluate systematically of the ICP-MS technique. On the other hand, a new database of trace element compositions can be certified for these international standards.
For the fossil teeth, major, minor and trace elements were pre-scanned using laser ablation before HR-ICP-MS analyses. According to the Diffusion-Adsorption Model suggested by Millard and Hedges, the uranium distribution patterns in the fossil teeth provide information on preservation status and if is worthy of efforts for dating. The trace elements distribution also can be used to evaluate the artifacts after buried.
The preliminary results indicate that uranium was enriched in the dentine compared with enamel. There is low thorium in the teeth except where fracture located. This indicates the overestimation of ages due to uptake of 230Th is unlikely. Moreover, Fe, Mn, Al, and Pb shows similar distribution in the crack or certain spots of the teeth, probably relatd to diagenesis. In summary, the uranium distribution is concentrated in the dentine, and is apparently saturated and therefore an accurate age is likely can be obtained.
< 西文參考文獻 >
Ayliffe L. K. and Chivas A. R., Oxygen isotope composition of the bone phosphate of Australian kangaroos: Potential as a palaeoenvironmental recorder. Geochim. Cosmochim. Acta 54 (9), 2603–2609, 1990
Barnes C. E. and Cochran J. K., Uranium removal in oceanic sediments and the oceanic U balance. Earth Planet. Sci. Lett. 97 (1,2) 94-101, 1990
Beck J.W., Edwards R. L., Ito E., Taylor F. W., Recy, Rougerie J. F., Joannot P. and Henin C., Sea surface temperature from coral skeletal strontium calcium ratios. Science 257 (5070) 644-647, 1992
Bard E., Hamelin B., Aenole M., Montaggiono L., Cabioch G., Faure G. and Rougerie F., Deglacial sea-level recode from Tahiti corals and the timing of global meltewater discharge. Nature 382 (6588) 241-244, 1996
Bard E., Delaygue G., Rostek F., Antonioli F., Silenzi S. and Schrag D.P., Hydrological conditions over the western Mediterranean basin during the deposition of the cold sapropel 6 event. Earth Planet. Sci. Lett. 202 (2) 481-494, 2002
Bourdon B., Turner S., Henderson G. M. and Lundstrom C. C., Uranium-series geochemistry. In: Reviews in mineralogy and geochemistry. 52. Bourdon B., Henderson G. M., Lundstrom C. C. and Turner S. (eds), Geochemical Society, Mineralogical Society of America, 10-12, 2003
Cherdyntsev V. V., Kazachevskii I. V., and Kuz’mina E. A., Isotopic composition of uranium and thorium in the supergene zone. Geochemistry 3, 217–283, 1963
Cherdyntsev, V. V., Kazachevskii, I. V. & Kuz’mina, E. A., Dating of Pleistocene carbonate formations by the thorium and uranium isotopes. Geochemistry International (English Translation) 2, 794, 1965
Chen, J.H., Edwards, R.L., Wasserburg, G.J., 238U, 234U and 232Th in seawater. Earth and Planet. Sci. Lett. 80 (3,4) 241-251, 1986
Chen T. and Yuan S., Uranium-series dating of bones and teeth from Chinese Paleolithic sites. Archaeometry 30 (1) 59–76, 1988
Chai J., Oura Y., Ebihara M., Comparison of RNAA and ICP-MS for the determination of ultra-traces of Th and U in geological and cosmochemical samples. Journal of Radioanalytical and Nuclear Chemistry 255 (3) 471-475, 2003
Cochran J. K. and Masqué P., Short-lived U/Th-series radionuclides in the ocean: tracers for scavenging rates, export fluxes and particle dynamics. Rev. Mineral Geochem 52, 461-492, 2003
Calsteren P. and Thomas L., Uranium-series dating applications in natural environmental science. Earth Sci. Rev. 75 (1-4) 155-175, 2006
Dulinski M. and Rozanski K., Formation of 13C/12C isotope ratios in speleothem: A semi-dynamic model. Radiocarbon 32 (1) 7-16, 1990
Elias R. W., Hirao Y., and Patterson C. C., The circumvention of the natural biopurification of calcium along nutrient pathways by atmospheric inputs of industrial lead. Geochim. Cosmochim. Acta 46 (12) 2561–2580, 1982
Edwards R. L., Beck J.W., Burr G.S., Donahue D.J., Druffel E. R. M. and Taylor F. W., A large drop in atmospheric 14C/12C and reduced melting during the Younger Dryas, documented with 230Th ages of corals. Science 260 (5110) 962-968, 1993
Ezzo J. A., Johnson C. J. and Price T. D., Analytical perspectives on prehistoric migration: A case study from East-Central Arizona. J. Arch. Sci. 24 (5) 447–466, 1997
Fairbanks, R. G.. and Matthews, R. K., The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies. Quat. Res.10 (2) 181-196, 1978
Fairchild I. J., Smith C. L., Baker A., Fuller L., Spötl C., Mattey D., McDermott F. and E.I.M.F., Modification and preservation of environmental signals in speleothems. Earth Sci. Rev. 75 (1-4) 105-153, 2006
Harmon R.S., Ku T.L., Matthews R.K. and Smart P.L., Limits of U-series analysis: Phase 1 results of the Uranium-Series Intercomparison Project., Geology 7, 405-409, 1979
Hellstrom J.C., McCulloch M. T. and Stone J., A detailed 31,000-year record of climate and vegetable changes from isotope geochemistry of two New Zealand speleothem. Quat. Res. 50 (2) 167-178, 1998
Handerson G. M. and Anderson R. F., The U-series toolbox for paleoceanography. Rev. Mineral Geochem 52, 493-531, 2003
Inoue M., Nohara M., Okai T., Suzuki A., Kawahata H., Concentration of trace elements in carbonate reference materials Coral JCp-1 and Giant Clam JCt-1 by inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research 28 (3) 411-416, 2004
Iyengar G. V., Kollmer W. E., and Bowen H. J. M., The Elemental Composition of Human Tissue and Body Fluids. Springer- Verlag, New York., 1978
Ikeya M., A model of linear uranium accumulation for ESR age of Heidelberg (Mauer) and Tautavel bones. Jpn. J. Appl. Phys. 21(11), 690–692, 1982
Ivanovich M., Ku T. L., Harmon R. S. and Smart P. L., Uranium Series Intercomparison Project (USIP), Nuclear Instruments and Methods in Research 223, 466-471, 1984
Klinkhammer G. P. and Palmer M.R., Uranium in the ocean: where it goes and why. Geochim Cosmochim Acta 55 (7) 1799-1806, 1991
Koch P. L., Heisinger J., Moss C., Carlson R. W., Fogel M. L., and Behrensmeyer A. K., Isotopic tracking of change in diet and habitat use in African elephants. Science 267 (5020) 1340–1343, 1995
Kohn M. J., Schoeninger M. J., and Barker W. W., Altered states: Effects of diagenesis on fossil tooth chemistry. Geochim Cosmochim Acta 63 (18) 2737–2747, 1999
McKinney, C. R., The determination of the reliability of uranium series dating of enamel, dentine and bone. Ph.D. thesis, Southern Methodist University. 1991
Millard A. R. and Hedges R. E. M., A diffusion-adsorption model of uranium uptake by archaeological bone. Geochim. Cosmochim. Acta 60 (13) 2139-2152, 1996
Mitsuguchi T., Matsumoto E., Abe O., Uchida T. and Isdale P. J., Mg/Ca thermometry in coral skeletons. Science 274 (5289) 961-963, 1996
Musgrove M. L., Banner J. L., Mack L. E., Combs D. M., James E. W., Cheng H. and Edwards R. L., Geochronology of late Pleistocene to Holocene speleothems from central Taxas. Implications for regional paleoclimate. Geol. Soc. Am. Bull. 113 (12) 1532-1543, 2001
Moran, S.B., Shen C.C., Edmonds, H.N., Weinstein, S.E., Smith, J.N., Edwards, R.L., Dissolved And Particulate Pa-231 And Th-230 in the Atlantic Ocean: constraints on intermediate/deep water age, boundary scavenging, and Pa-231/Th-230 fractionation. Earth and Plane. Sci. Lett. 203 (2) 999-1015, 2002
Neff U., Burns S. J., Mangini A., Mudelsee M., Fleitmann D. and Matter A., Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyrs ago. Nature 411 (6835) 290-293, 2001
Osmond J. K. and Ivanovitch M., Uranium-series mobilization and surface hydrology. In: Uranium series disequilibrium: Application to Earth, Marine and Environmental Science. Ivanovitch M., Harmon R. S.(eds), Oxford Sciences Publications, Oxford, 259-289, 1992
Okai T., Suzuki A., Kawahata H., Terashima S., Imai N., Preparation of a new geological survey of Japan geochemical reference material: Coral JCp-1. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis 26 (1) 95-99, 2002
Ohde S., Ramos A.A., Ozaki H., Sawahata H., Okai T., Determination of boron in marine carbonates by prompt gamma-ray analysis. Journal of Radioanalytical and Nuclear Chemistry 258 (2) 431-434, 2003
Orloff K. G., Mistry K., Charp P., Metcalf S. Marino R. Shelly T., Melaro E., Donohoe A. and Jones R. L., Human exposure to uranium in groundwater. Environmental Research 95 (3) 319-326, 2005
Rae A. M. and Ivanovich M., Succesful application of uranium series dating of fossil bone. Appl. Geochem. 1 (3) 419–426, 1986
Rae A. M., Hedges R. E. M., and Ivanovich M., Further studies for uranium-series dating of fossil bones. Appl. Geochem. 4 (3) 331–337, 1989
Palmer M. R. and Edmond J. M., Uranium in river water. Geochim. Cosmochim. Acta 57 (20) 4947-4955, 1993
Price T. D., Johnson C. M., Ezzo J. A., Ericson J., and Burton J. H., Residential mobility in the prehistoric southwest United States: A preliminary study using strontium isotope analysis. J. Arch. Sci. 21 (3) 315–330, 1994
Pike A. W. G., Hedges R. E. M. and Van calsteren P., U-series dating of bone using the diffusion-adsorption model. Geochim. Cosmochim. Acta 66 (24) 4273-4286, 2002
Palmer M. R. and Pearson P. N., A 23,000-year record of surface water pH and pCO2 in the western equatorial Pacific Ocean. Science 300 (5618) 480-482, 2003
Szabo, B. J. & Rosholt, J. N. Uranium series dating of pleistocene molluscan shells from southern California: an open system model. J. Geophysi. Res. 74, 3253–3260, 1969
Sealy J. C., van der Merwe N. J., Sillen A., Kruger F. J., and Krueger H. W., 87Sr/86Sr as a dietary indicator in modern and archaeological bone. J. Arch. Sci. 18 (3) 399–416, 1991
Skulan J., DePaolo, D. J., and Owens T. L., Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta 61 (12) 2505–2510, 1997
Tauber H., 13C evidence for dietary habits of prehistoric man in Denmark. Nature 292 (5821) 332–333, 1981
Terashima S., Determination of indium and tellurium in fifty nine geological reference materials by solvent extraction and graphite furnace atomic absorption spectrometry. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis 25 (1) 127-132, 2001
Wang Y. G., Cheng H., Edwards R. L., An Z. S., Wu J. Y., Shen C.-C. and Dorale J. A., A High-Resolution Absolute-Dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 294 (5547) 2345-2348, 2001
Yu K., Chen T., Huang D., Zhou H., Zhong J. and Liu D., The high-resolution climate recorded in the δ18O of Porites lutea from the Nansha Islands of China. Chinese Sci Bull. 46. 2097-2102, 2001
Zhou L. P., McDermott F., Rhodes E. J., Marseglia E. A., and Mellars P. A., ESR and mass-spectrometric uranium-series dating studies of a mammoth tooth from Stanton Harcourt, Oxfordshire, England. Quat. Sci. Rev. (Quat. Geochronol.) 16, 445–454., 1997
Zhao J. X., Hu K., Collerson K.D. and Xu H. K., Thermal ionization mass spectrometry U-series dating of a hominid site near Nanjing, China. Geology 29 (1) 27-30, 2001
< 中文參考文獻 >
王兆榮、彭子成、倪守斌及馬志邦;高精度熱電離質譜定年對石筍古溫度研究的意義;自然雜誌,第21卷,第五期,1999
同號文、尚虹、張雙權及陳福友;周口店田園洞古人類遺址的發現。 科學通報,第49卷,第9期, 893-897頁,2004
同號文、尚虹、張雙權、劉金毅、陳福友、吳小紅及李青;周口店田園洞古人類化石點地層學研究及與山頂洞的對比。人類學學報,第25卷,第1期,68-81頁,2006