| 研究生: |
程紀嘉 Cheng, Chi-Chia |
|---|---|
| 論文名稱: |
具多重反應值製程之要因分析 Finding the key factors for multiple-response manufacturing process |
| 指導教授: |
潘浙楠
Pan, Jeh-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 馬式距離 、希求度函數 、田口方法 、多重反應值製程 、QFP/BGA焊接製程 |
| 外文關鍵詞: | QFP / BGA solder paste printing process, desirability function, Multiple-response process, Mahalonobis distance, Taguchi method |
| 相關次數: | 點閱:158 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業界在進行各種品質改善的專案計畫與實務案例中,許多問題均牽涉到多個彼此相關反應值的要因分析。以本研究所探討之電路板塑料方型扁平式封裝(QFP)及球狀方陣封裝(BGA)為例,此種印刷電路板的焊接製程有四個彼此相關之品質特性,即焊接體積(deposited volume)、面積(deposited area)、高度(deposit- ed height)及焊接材料投入/產出的轉換比(transfer ratio)。Jianbiao Pan(2004)在電路板BGA及QFP焊接製程的要因探討一文中曾針對焊接體積及投入/產出轉換比之反應值,分別以全因子實驗(full factorial)方式進行模板厚度(stencil thickness)、焊接材料(solder paste type)、板之處理方式(board finish)、輸送帶速度(print speed)、模板孔徑大小(aperture size)及孔徑形狀(aperture shape)等六個製程參數的變異數分析,以分別找出其影響的重要因子。
由於上述QFP及BGA焊接製程中焊接體積、面積、高度及焊接材料投入/產出轉換比等四個反應值彼此相關,以個別反應值分別探討其影響要因的方式並不妥當,故本研究採用馬式距離結合田口系統之MTS(Mahalanobis-Taguchi system)及MTGS(Mahalanobis -Taguchi-Gram-Schmidt system)等多變量分析之手法,先將此種多重品質特性製程的反應值正交化,再利用馬氏距離的信躁比(signal to noise ratio)尋找要因。並將上述四種反應值 轉換成為希求度函數(desirability function, )後,利用其總希求度函數進行製程之最佳化。以期建立一種透過MTS/MTGS及希求度函數方式分析多重反應值製程要因的手法。最後本研究將此分析手法與傳統田口方法進行比較分析,結果顯示本研究所提出之方法較田口方法更能正確判斷出要因。
Multiple-input(factors) and multiple-output(response) problem has been frequently encountered and discussed in many quality improvement projects and case studies. For example, there are four correlated quality characteristics in the solder paste stencil process, i.e. the volume, area and height of solder paste deposited, which can be measured by an inline fully automatic laser-based 3-D solder paste inspection system. In addition, transfer ratio is another response variable used in the key factor analysis of solder paste stencil printing for quad flat package(QFP) and ball grid array(BGA) package. Jianbiao Pan(2004) conducted an experiment to determine which are the critical variables(factors) that control the amount of solder paste deposited and transfer ratio. Six factors selected in his study are stencil thickness, aperture size, aperture shape, board finish, solder paste type, and print speed.
This paper proposes a multivariate technique based on the Mahalanobis-Taguchi- Gram Schmit system(MTGS) as well as the desirability function to explore the key factors for the QFP / BGA solder paste stencil printing process. First, an integrated Mahalonobis-Taguchi system(MTS) as well as the MTGS technique are utilized to diagnose the abnormities of the above-mentioned QFP date and then the signal-to-noise(S / N) ratios are calculated for finding the key factors. Furthermore, four correlated response values are converted to their desirability functions in order to find an overall desirability function for the multi-response solder paste stencil printing process. Finally, both the analysis results of MTS / MTGS and Taguchi methods are compared. The results show that our proposed method is more accurate than Taguchi method in searching out the key factors.
1.Antony, J., 2000, Multi-response optimization in industrial experiments using Taguchi’s quality loss function and principal component analysis, International Journal of Quality and Reliability Engineering, 16, 3-8.
2.Castillo, E. D., Montgomery, D. C. and McCarville, D. R., 1996, Modified desirability functions for multiple response optimization, Journal of Quality Technology, 28, 3, 337-345.
3.Chiao, C. H. and Hamada, M., 2001, Analysis experiment with correlated multiple responses, Journal of Quality Technology, 33, 4, 451-465.
4.Chou, C. Y., Chen, C. H. and Caleb Li, M. H., 2001, Application of computer simulation to the design of a traffic signal timer, Computer and Industrial Engineering, 39, 81-94.
5.Chou, C. Y., Chen, C. H., Yang, C. C. and Wu, C.C., 2005, Application of bivariate parameter design to the optimization of the operation conditions of a turning process, International Journal of Production Research, 43, 24, 5229-5240.
6.Derringer, G. and Suich, R., 1980, Simultaneous optimization of several response variable, Journal of Quality Technology, 12, 4, 214-219.
7.Edwin, C. H., 1965, The desirability function, Industrial Quality Control,April, 494-498.
8.Jeong, I. J. and Kim, K. J., 2003, Interactive desirability function approach to multi-response surface optimization, International Journal of Reliability and Safety Engineering, 10, 2, 205-217.
9.Ko, Y. H., Kim, K. J. and Jun, C.H., 2005, A new loss function-based method for multiresponse optimization, Journal of Quality Technology, 37, 1, 50-59.
10.Kros, J. F. and Mastrangelo, C. M., 2001, Comparison methods for the multi-response design problem, Quality and Reliability Engineer International, 17, 323-331.
11.Montgomery, D. C., 2001, Design and Analysis of Experiments, 5th Ed., John Wiley & Sons.
12.Pan, Jianbiao, Tonkay, G. L., Storer, R. H., Sallade, R. M. and Leandri, D. J., 2004, Critical variable of solder paste stencil printing for micro-BGA and fine-pitch QFP, IEEE Transactions on Electronics Manufacturing, 27, 2, 125-132.
13.Rethy, Z., Koczor, Z. and Erdelyi, J., 2004, Handling contradicting requirements using desirability functions, Acla Polytechnica Hunganica, 1, 2, 5-12.
14.Sharma, S., 1996, Applied Multivariate Techniques, John Wiley & Sons, Canada.
15.Wang, H. C., Chiu, C. C. and Su, C. T., 2004, Data classification ising the Mahalanobis-Taguchi System, Journal of the Chinese Institute of Industrial Engineers, 21, 6, 606-618.
16.Taguchi, G., Elsayed, E. and Hsiang, T., 1989, Quality Engineering in Production Systems, McGraw-Hill Inc., N.Y.
17.Taguchi, G. and Jugulum, R., 2002, The Mahalanobis-Taguchi Strategy –a Pattern Technology System, John Wiley & Sons, N.Y.
18.陳順宇,2002,多變量分析,華泰書局,台北市,第三版。
19.潘浙楠、李文瑞,2003,品質管理,俊傑書局股份有限公司。