| 研究生: |
王以震 Wang, Yi-Zhen |
|---|---|
| 論文名稱: |
應用DQEM於求解具剪變形之任意複合變斷面樑結構物之靜變形問題 |
| 指導教授: |
陳長鈕
Chen, Chang-New |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 造船及船舶機械工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | 數值積分表示微分元素法 |
| 外文關鍵詞: | DQEM |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
數值積分表示微分元素法,將欲分析的結構物分割成有限個元素,然後利用數值積分表示微分之方式,定義於各個元素的微分或偏微分關係式做數值的離散化,且在整體結構物的離散點滿足所應具有的力學微分關係式之條件下,求取結構物之離散方程式系統。而數值積分表示微分元素法乃是一種具有高耦合特性的數值分析模式。因此,電腦處理時,除了運算的負荷量可降低外,精度亦能相對的提高。
本篇論文是開發陳長鈕教授之數值積分表示微分元素法,將其模式運用在具剪變形之任意複合變斷面樑結構物之靜變形問題,探討研究剪變形樑是一種不同於 Euler-Bernouli Beam的另一種樑的問題型式,此乃因為具剪變形之任意複合變斷面樑之橫斷面尺寸跟樑的長度尺寸的比值為一不可忽略的有限值,因此當樑遭受到橫向力之負荷時,其斷面受到剪力的作用產生之剪變形對樑整體的變位存在有一誤差值,而此誤差並不可忽略,也因此統御方程之重新建立乃為必要之步驟。
具剪變形之任意複合變斷面樑結構物之靜變形問題是本篇論文所積極表現之主軸,利用陳長鈕教授的數值積分表示微分元素法來求取數值,而其計算結果表現出此數值方法開發之成果驗証及精確度之提昇。
DQEM divides the structures waiting to be analyzed into limited elements, and then uses DQEM to define each element’s calculus or partial calculus relationship finding out the quantity of dispersion. Moreover, under the force-calculus-relating equation corresponding to the structure as a whole, retrieving the structure’s dispersion-equation system. DQEM is a highly accurate method of analysis. Therefore, when handling the computer, other than reducing the load of the computer itself, its accuracy also increases.
This thesis is to explore into depth the DQEM acknowledged by Dr. Chen Chung New, using its working method on the sheer force of the random compound beam’s static transformation problems, and to research on the difference of which to Euler-Bernouli Beam-another type of beam problem, due to the important limits of the ratio of the horizontal surface size and the beam’s length. So when the beam faces a horizontal force,the surface undertakes sheer force resulting in sheer-transformation, causing slight miscalculation in entire beam structure, leaving the miscalculation slight but undiscardible, therefore the reestablishment of equilibrium equations is one major step.
Random compound beams possessing static sheer-transformation is the core presentation of this thesis, by using Dr. Chen’s DQEM way of calculating no doubt gives us the proof of mathematical progress and increased accuracy.
[1] C. N. Chen, A differential Quadrature Element Method Irregular Element Torsion Analysis Model, Appl. Math. Model, 23, 309-328, 1999.
[2] C. N. Chen, A differential Quadrature Element Method, Proc. Ist Intl. Conf. Engr. Computation and Computer Simulation, Changsha, China, 25-35, 1995.
[3] C. N. Chen, A Generalized Coordinate Differential Quadrature Element Method, Proc. NMA98, Sofia, BULGARIA, 721-728, 1998.
[4] C. N. Chen, A Generalized of Differential Quadrature Element Method, Comput. Methods Appl. Mechs. Engrg., accepted for publication.
[5] C. N. Chen, Adaptive Differential Quadrature Element Refinement Analyses of Fluid Mechanics Problems, Comput. Methods Appl. Mechs. Engrg., 180, 47-63, 1999.
[6] C. N. Chen, Differential Quadrature Element Analyses Using Extended Differential Quadrature, Comput. Math. Appls., 39, 65-79, 1999.
[7] C. N. Chen, Finite Difference Discretizations by Differential Quadrature Techniques, J. Commu. Mumber. Methods Engr., 15, 823-833, 1999.
[8] C. N. Chen, Generalization of Differential Quadrature Discretization, Numerical Algorithms, 22, 167-182, 1999.
[9] C. N. Chen, The Development of Irregular Elements for Differential Quadrature Elemnet Method Steady-State Heat Conduction Analysis, Comput. Methods Appl. Mechs. Engr., 23, 309-328, 1998.
[10] C. N. Chen, The Two-dimensional Frame Model of the Differential Quadrature Element Method, Computers & Structures.
[11] Chang Shu and Bryn E. Richard, Application of Generalized Differential Quadrature to solve Two-Dimensional Incomoressible Navier-Stokes Equations, International Journal For Numerical Method in Fluids, Vol.15, 791-798, 1992.
[12] F. Civan and C. M. Sliepcevich, Differential Quadratural for Multidimentional Problems, J. Math. Anal. Appl., 101, 423-443, 1984.
[13] F. Civan and C. M. Sliepcevich, Differential Quadratural to Trandsport Processes, J. Math. Anal. Appl., 93, 206-221, 1983.
[14] H. Du, M. K. Liew and M. K. Lim, Generalized Differential quadrature Method for Buckling Analysis, Journal of Engineering Mechanics, Vol.122, No.2, February, 1996.
[15] J. H. Gaines and E. Volterra, Transverse vibrations of cantilever bars of variable cross section, Journal of the Acoustical Society of America, Vol.39,674-679,1966.
[16] J. H. Lau, Vibration frequencies of tapered bars with end mass, Journal of Applied Mechanics Vol.51, 179-181, 1984.
[17] R. E. Bellman and J. Casti, Differential Quadrature and Long-term Itegration, J. Math. Anal., 34, 235-238, 1971.
[18] S. K. Jang, C. W. Bert and A. G. Striz, Application of Differential Quadrature to Static Analysis of Structural Components, Int. J. Numer. Methods eng., 28, 561-577 , 1989.
[19] 宋治勇, 數值積分表示微分元素法振動分析模式, 國立成功大學造船及船舶機械工程研究所碩士論文, 1996.
[20] 林育男, 數值積分表示微分元素法的研究, 國立成功大學造船及船舶機械工程研究所碩士論文, 1995.
[21] 邱富勇, 變斷面柱挫曲問題之數值積分表示微分元素法分析模式, 國立成功大學造船及船舶機械工程研究所碩士論文, 1998.
[22] 莊貴欽, 考慮剪變形之數值積分表示微分元素法複合及等向性非均一厚度圓板分析模式, 國立成功大學造船及船舶機械工程研究所碩士論文, 1999.
[23] 陳長鈕, 數值積分表示微分元素法非均一斷面薄壁樑模式研發, 行政院國家科學委員會專題研究計畫成果報告, 1997.
[24] 彭成彥, 數值積分表示微分元素法薄壁變斷面樑分析模式, 國立成功大學造船及船舶機械工程研究所碩士論文, 1996.
[25] 黃志偉, 數值積分表示微分元素法剪變形變斷面樑分析模式, 國立成功大學造船及船舶機械工程研究所碩士論文, 1997.
[26] 謝明錡, 數值積分表示微分元素法具彈性基座樑分析模式, 國立成功大學造船及船舶機械工程研究所碩士論文, 1997.