簡易檢索 / 詳目顯示

研究生: 黃鈺斐
Huang, Yu-Fei
論文名稱: 探討泛素-蛋白質解體訊息對於長期抑制作用 表現之調控
The role of ubiquitin-proteasome cascade in the expression of long-term depression
指導教授: 許桂森
Hsu, Kuei-Sen
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 長期抑制作用泛素-蛋白質解體
外文關鍵詞: long-term depression, ubiquitin-proteasome
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在神經系統發育過程中,藉由突觸塑性的改變來調控之神經網絡修飾作用,扮演著相當重要的角色。目前有關突觸塑性的生理功能的了解,主要來自哺乳動物海馬迴區域的研究。在海馬迴CA1,CA3,及齒狀回區域,短暫的給予高頻率的電刺激可以誘發神經突觸強度持續性的增強作用,稱之為長期增益(long-term potentiation;LTP)現象,反之,若給予連續性低頻電刺激則會造成突觸強度持續性地減弱,亦即長期抑制(long-term depression;LTD)現象。此兩種現象目前被廣泛認為可能參與學習及記憶之形成機制。

      哺乳動物腦部蛋白質的改變,在突觸塑性與功能上扮演一個重要的角色。目前已知,蛋白質的生合成與長期突觸塑性的表現有關,然而,對於蛋白質分解是否也參與長期神經塑性之表現則仍不清楚。研究證據顯示,透過活化泛素-蛋白質解體(ubiquitin-proteasome)徑路可能具有調控突觸發育與塑性表現之作用。然而,當突觸塑性改變時,某些特定哺乳動物的受質是如何受到泛素-蛋白質解體的調控,則仍然不清楚。因此,本研究的主要目的在於探討泛素-蛋白質解體訊息對於長期突觸塑性表現之調控。

      我們的結果發現,處理蛋白質解體抑制劑MG132會抑制經由連續低頻電刺激(low-frequency stimulation;LFS)或直接投予N-methyl-D-aspartate(NMDA)在海馬迴CA1區域所誘發之長期抑制作用。然而,其對於(S)-3,5-dihydroxyphenylglycine(DHPG)所誘發之長期抑制作用則沒有影響。此外,MG132也調控足跡蛋白post synaptic density protein PSD-95被蛋白質解體(proteasome)分解之作用,而這個過程可能決定了α-amino-3-hydroxy-5-methyisoxazole-4-propionic acid(AMPA)受體在突觸上表現的程度。另外,以AMPA活化AMPA受體會選擇性地造成PSD-95受到泛素化。而透過NMDA或AMPA的投予在組織培養的海馬迴神經元上,也會造成神經元表面AMPA受體GluR1 結構單元表現的減少。

      然而,不論是NMDA或AMPA處理都不會造成GluR1或GluR2結構單元的泛素化(ubiquitination)作用。在NMDA處理組織培養海馬迴神經元會造成PSD-95蛋白表現的減少,此作用與蛋白質解體的活化可能有關,其並非活化ㄧ般蛋白酶所產生的。此外處理NMDA時所產生之PSD-95蛋白表現減少,主要是透過活化突觸外的(extrasynaptic)含NR2B型的NMDA受體而產生的。若藉由KCl或glycine的處理,來促進glutamate的釋放,進而活化突觸區的NMDA受體,反而觀察到PSD-95的表現量增加的現象。此作用係透過活化含NR2A型的NMDA受體所產生。而NMDA也會造成PSD-95-Ca2+/calmodulin-dependent protein kinase II/NR2A複合體的減少。透過以上的觀察,我們認為泛素-蛋白質解體徑路的確參與海馬迴CA1神經網路長期神經塑性之表現,而調控PSD-95的突觸表現對於突觸上麩胺酸受體的表現及功能的執行可能也扮演著相當重要角色。

      Activity-dependent alteration of synaptic strength is essential for the refinement of neuronal circuitry in developing nervous systems and for the plasticity of mature brain. Much of our understanding of activity dependent synaptic modification and its functional relevance comes from studies on the mammalian hippocampus. In CA1, CA3, and dentate gyrus regions of the hippocampus, brief high-frequency stimulation of afferent pathways can trigger a long-lasting enhancement of synaptic strength, commonly referred to as long-term potentiation (LTP), whereas prolonged low-frequency stimulation results in a long-lasting decrease in synaptic strength, termed as long-term depression (LTD).

      The availability of proteins likely plays an important role in synaptic function and plasticity in the mammalian brain. Protein synthesis has been clearly shown to play a role in the expression of long-term synaptic plasticity, however, little is known about the potential role of protein degradation. Recently, accumulative evidence has demonstrated the physiological significance of ubiquitin-proteasome pathway regulation in synaptic development, transmission and plasticity. However, the identity of specific mammalian substrates regulated by ubiquitination during synaptic plasticity remains unknown. Thus, the primary goal of this study is to address this issue by using the conventional electrophysiological and biochemical approaches in both acutely isolated rat hippocampal slices and cultured neurons.

      In conclusion, our results show that proteasome inhibitor MG132 successfully prevented the induction of both low-frequency stimulation- and NMDA-induced LTD in the CA1 region of the hippocampal slices and a proteasome-dependent regulation of PSD-95 level is an important determinant of the expression of AMPA receptors at the synapses. Moreover, PSD-95 is ubiquitinated in response to AMPA receptor activation, whereas NMDA treatment had no effect. NMDA treatment causes the degradation of PSD-95 by NR2B-containg NMDA receptor activation. In contrast, glycine or high K+ stimulation, which stimulates the glutamate release, induces an increase in the PSD-95 protein level through the activation of NR2A-containing NMDA receptors. Together these findings provide a further insight into the role of protein ubiquitination-proteasome degradation system in the induction of LTD in the hippocampal CA1 region and support for a role for PSD-95 in activity-dependent synaptic changes.

    中文摘要                           2 英文摘要                           6 縮寫檢索表                          9 第一章 緒論                         12 第二章 實驗材料及方法                    26  第一節 腦薄片的製備                    27  第二節 電氣生理學記錄法                  29 Ⅰ、胞外電氣生理學記錄法                30 Ⅱ、統計方法                      30 Ⅲ、藥品的來源與製備                  30  第三節 初級海馬迴神經細胞培養               31  第四節 西方點墨法                     33 第三章 實驗結果                       41 第四章 討論                         54 第五章 圖表                          64 第六章 參考文獻                       78 圖表索引                           95 自述                             97

    Abel, T. and Lattal, K.M. (2001) Molecular mechanisms of memory acquisition, consolidation and retrieval. Curr. Opin. Neurobiol. 11: 180-187.

    Abraham, W.C. and Bear, M.F. (1996) Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19: 126-130.

    Auberson YP, Allgeier H, Bischoff S, Lingenhoehl K, Moretti R, Schmutz M.(2002) 5-Phosphonomethylquinoxalinediones as competitive NMDA Receptor antagonists with a preference for the human 1A/2A, rather than 1A/2B receptor composition. Bioorg. Med. Chem. Lett. 12: 1099-1102.

    Balkowiec A, Katz DM. (2002) Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. J. Neurosci. 22: 10399-10407.

    Barry, M.F. and Ziff, E.B. (2002) Receptor trafficking and the plasticity of excitatory synapses. Curr. Opin. Neurobiol. 12: 279-286.

    Bashir, Z.I. (2003) On long–term depression induced by action of G-protein coupled receptor. Neurosci. Res. 45: 363-367.

    Bear, M.F. and Abraham, W.C. (1996) Long–term depression in hippocampus. Annu. Rev. Neurosci. 19: 437-462.

    Bear, M.F. and Malenka, R.C. (1994) Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4: 389-399.

    Beattie EC, Carroll RC,Yu X, MorishitaW,Yasuda H, et al. (2000) Regulation
    of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nat. Neurosci. 3: 1291-1300.

    Behe, P., Stern, P., Wyllie, D.J., Nassar, M., Schoepfer, R., and Colquhoun, D. (1995) Determination of NMDA NR1 subunit copy number in recombinant NMDA receptors. Proc. R. Soc. Lond. B. Biol. Sci. 262: 205-213.

    Bingol Baris, Schuman EM. (2004) Aproteasome-sensitive connection between PSD-95 and GluR1 endocytosis. Neuropharmacology 47: 755-763.

    Bliss, T.V. and Collingridge, G.L (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31-39.

    Bliss, T.V. and Lomo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant pathway. J. Physiol. (Lond) 232: 331-356.

    Bolshakov, V.Y., Carboni, L., Cobb, M.H., Siegelbaum, S.A., and Belardetti, F. (2000) Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3-CA1 synapses. Nat. Neurosci. 3: 1107-1112.

    Bordi, F. and Ugolini, A. (1999) Group I metabotropic glutamate receptors: implications for brain diseases. Prog. Neurobiol. 59: 55-79.

    Bredt, D.S., Nicoll, R.A. (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40: 361-379.

    Burbea, M., Dreier, L., Dittman, J.S., Grunwald, M.E., and Kaplan, J.M. (2002) Ubiquitin and AP180 Regulate the Abundance of GLR-1 Glutamate Receptors at Postsynaptic Elements in C. elegans. Neuron 35: 107-120.

    Calabresi, P., Pisani, A., Mercuri, N.B., and Bernardi, G. (1992) Long-term potentiation in the striatum is ummasked by removing the voltage-dependent magnesium block of NMDA receptor channels.
    Eur. J. Neurosci. 4: 929-935.

    Carroll, R.C., Beattie, E.C., von Zastrow, M., and Malenka, R.C. (2001) Role
    of AMPA receptor endocytosis in synaptic plasticity. Nat. Rev. Neurosci. 2: 315-324.

    Carroll, R.C., Beattie, E.C., Xia, H., Luscher, C., Altschuler, Y., Nicoll, R.A., Malenka, R.C., and von Zastrow, M. (1999) Dynamic-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA. 96: 14112-14117.

    Carroll, R.C., Lissin, D.V., von Zastrow, M., Nicoll, R.A., and Malenka, R.C. (1999) Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2: 454-460.

    Chen, L., Smith, L., Accavitti-Loper, M.A., Omura, S., and Bingham, Smith J. (2000) Ubiquitylation and destruction of endogenous c-MycS by the proteasome: are Myc boxes dispensable ? Archives of Biochemistry and Biophysics 374: 306-312.

    Choi, D.W. and Rothman, S.M. (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13: 171-182.

    Chung, H.J., Xia, J., Scannevin, R.H., Zhang, X., and Huganir, R.L. (2000) Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J. Neurosci. 20: 7258-7267.

    Ciechanover, A., Heller, H., Hershko, A., Haas, A. L., and Rose, I. A. (1980) Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. USA. 77: 1783-1786.

    Ciechanover, A., Elias, S., Heller, H., and Hershko, A. (1982) "Covalent affinity" purification of ubiquitin-activating enzyme. J. Biol. Chem. 257: 2537-2542.

    Coan, E.J. and Collingridge, G.L. (1985) Magnesium ions block an N-methyl-D-aspartate receptor-mediated component of synaptic transmission in rat hippocampus. Neurosci. Lett. 53: 21-26.

    Colledge, M., Snyder, E.M., Crozier, R.A., Soderling, J.A., Jin, Y., Langeberg, L.K., Lu, H., Bear, M.F., and Scott, J.D. (2003) Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40: 595–607.

    Constantine-Paton M., Cline H.T., Debski E. (1990) Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13: 129-154.

    Craven, S.E., and Bredt, D.S. (1998) PDZ proteins organize synaptic signaling pathways. Cell 93: 495-498.

    Cull-Candy, S., Brickley, S., Farrant, M. (2001) NMDA receptor subunits: diversity, development and disease. Curr. Opin. Neurobiol. 11: 327-335.

    Dingledine, R., Borges, K., Bowie, D., and Traynelis, S.F. (1999) The
    glutamate receptor ion channels. Pharmacol. Rev. 51: 7-61.

    Dingledine, R., Hynes, M.A., King, G.L. (1986) Involvement of
    N-methyl-D-aspartate receptors in epileptiform burst firing in the rat
    hippocampal slice. J. Physiol. (Lond) 380: 175-189.

    Dudek, S.M. and Bear, M.F. (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA. 89: 4363-4367.

    Dudek, S.M. and Bear, M.F. (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J. Neurosci. 13: 2910-2918.

    Ehlers, M.D. (2000) Reinsertion or degradation of AMPA receptors determined by activitydependent endocytic sorting. Neuron 28: 511-525.

    Ehlers, M.D. (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6: 231-242.

    El-Husseini Ael-D, Schnell, E., Dakoji S., Sweeney, N., Zhou, Q., Prange, O., Gauthier-Campbell, C., Aguilera-Moreno, A., Nicoll, R.A., Bredt, D.S. (2002) Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108: 849-863.

    Fenteany, G., Standaert, R.F., Lane, W.S., Choi, S., Corey, E.J., Schreiber, S.L. (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268: 726-731.

    Garcia, E.P., S. Mehta, L.A.C. Blair, D.G. Wells, J. Shang, T. Fukushima, J.
    Fallon, C.C. Garner, and J. Marshall. (1998) SAP90 binds and clusters
    kainite receptors causing incomplete desensitization. Neuron 21: 727-739.

    Gardoni, F., Schrama, L.H., Kamal, A., Gispen, W.H., Cattabeni, F., and Di Luca M. (2001) Hippocampal Synaptic Plasticity Involves Competition between Ca2+/Calmodulin-Dependent Protein Kinase II and Postsynaptic Density 95 for Binding to the NR2A Subunit of the NMDA Receptor. J. Neurosci. 21: 1501-1509.

    Garner, C.C., Nash, J. and Huganir, R.L. (2000) PDZ domains in synapse assembly and signaling. Trends Cell Biol. 10: 274-280.

    Gean, P.W., Chang, F.C., Huang, C.C., Lin, J.H., and Way, L.J. (1993) Long-term enhancement of EPSP and NMDA receptor-mediated synaptic transmission in the amygdala. Brain Res. Bull. 31: 7-11.

    Glickman, M.H., and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction.
    Physiol. Rev. 82: 373-428.

    Haas, A. L., Warms, J. V. B., Hershko, A., and Rose, I. A. (1982) Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation. J . Biol. Chem. 257: 2543-2548.

    Harris, E.W. and Cotman, C.W. (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl-D-aspartate antagonists. Neurosci. Lett. 70: 132-137.

    Hayashi, Y., Shi, S.H., Esteban, J.A., Piccini, A., Poncer, J.C., and Malinow, R. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287: 2262-2267.

    Hegde, A.N. and DiAntonio, A. (2002) Ubiquitin and the synapse. Nat. Rev. 3: 854-861.

    Herron, C.E., Lester, R.A., Coan, E.J., and Collingridge, G.L. (1986) Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature (Lond) 322: 265-268.

    Hershko, A., Ciechanover, A., and Rose, I. A. (1981) Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown. J. Biol. Chem. 256: 1525-1528.

    Hershko, A., and Ciechanover, A. (1998) The ubiquitin system. Annu Rev Biochem. 67: 425-479.

    Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J . Biol. Chem. 258: 8206-8214.

    Hestrin, S., Nicoll, R.A., Perkel, D.J., and Sah, P. (1990) Analysis of excitatory synaptic action in pyramidal using whole-cell recording from rat hippocampal slices. J. Physiol. (Lond) 422: 203-225.

    Hsueh, Y.P. and Sheng, M. (1998) Anchoring of glutamate receptors at the synapse. Prog. Brain Res. 116: 123-131.

    Huang, C.C., Liang, Y.C., and Hsu, K.S. (1999) A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J. Neurosci. 19: 9728-9738.

    Huang, C.C., Liang, Y.C., and Hsu, K.S. (2001) Characterization of the mechanism underlying the reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J. Biol. Chem. 276: 48108-48117.

    Huang, C.C., You, J.L., Wu, M.Y., and Hsu, K.S. (2004) Rap1-induced p38 mitogen-activated protein kinase activation facilitates AMPA receptor trafficking via the GDI-Rab5 complex: potential role in (S)-3,5-dihydroxyphenylglycine-induced long term depression.J. Biol. Chem. 279:
    12286-12292.

    Huber, K.M., Kayser, M.S., and Bear, M.F. (2000) Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288: 1254-1257.

    Huber, K.M., Roder, J.C., and Bear, M.F. (2001) Chemical induction of mGluR5- and protein synthesis-dependent long-term depression in hippocampal area CA1. J. Neurophysiol. 86: 321-325.

    Kameyama, K., Lee, H.K., Bear, M.F., and Huganir, R.L. (1998) Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21: 1163-1175.

    Katz, L.C., Shatz, C.J. (1996) Synaptic activity and the construction of cortical circuits. Science 274: 1133-1138.

    Kemp, N., McQueen, J., Faulkes, S., and Bashir, Z.I. (2000) Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur. J. Neurosci. 12: 360-366.

    Kemp, N. and Bashir, Z.I. (2001) Long-term depression: a cascade of induction and expression mechanisms. Prog. Neurobiol. 65: 339-365.

    Kennedy, M.B. (1997) The postsynaptic density at glutamatergic synapses.
    Trends Neurosci. 20: 264–268.

    Kim, E., S.S. Naisbitt, Y.P. Hsueh, A. Rao, A. Rothschild, A.M. Craig, and
    M. Sheng. (1997) GKAP, a novel synaptic protein that interacts with the
    guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136: 669-678.

    Kirkwood, A. and Bear, M.F. (1994) Homosynaptic long-term depression in the visual cortex. J. Neurosci. 14: 3404-3412.

    Kirkwood, A., Dudek, S.M., Gold, J.T., Aizenman, C.D., and Bear, M.F. (1993) Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science 260: 1518-1521.

    Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M., and Mishina M. (1992) Molecular diversity of the NMDA receptor channel. Nature 358: 36-41.

    Laube, B., Kuhse, J., and Betz, H. (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci. 18: 2954-2961.

    Laurie, D.J., Bartke, I., Schoepfer, R., Naujoks, K., Seeburg PH. (1997) Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res. Mol. Brain Res. 51: 23-32.

    Lee, D.H. and Goldberg, A.L. (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8: 397-403.

    Lee, H.K., Kameyama, K., Huganir, R.L., and Bear, M.F. (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21: 1151-1162.

    Lee, H.K., Takamiya, K., Han, J.S., Man, H., Kim, C.H., Rumbaugh, G., Yu,
    S., Ding, L., He, C., Petralia, R.S., et al. (2003) Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112: 631-643.

    Leonard, A.S., Lim, I.A., Hemsworth, D.E., Horne, M.C., Hell, J.W. (1999)
    Calcium/calmodulin-dependent protein kinase II is associated with the
    N-methyl-D-aspartate receptor. Proc. Natl. Acad. Sci. USA. 96: 3239-3244.

    Liao, D., Hessler, N.A., Malinow, R. (1995) Activation of postsynaptically
    silent synapses during pairing-induced LTP in CA1 region of hippocampal
    slice. Nature 375: 400-404.

    Lissin, D.V., Carroll, R.C., Nicoll, R.A., Malenka, R.C., and von Zastrow, M. (1999) Rapid, activation-induced redistribution of ionotropic glutamate receptors in cultured hippocampal neunons. J. Neurosci. 19: 1263-1272.

    Liu, L., Wong, T.P., Pozza, M.F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y.P., and Wang, Y.T. (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity.Science 304:
    1021-1024.

    Loftis, J.M. and Janowsky, A. (2003) The N-methyl-D-aspartate receptor subunit NR2B: localisation, functional properties, regulation and clinical implications. Pharmacol. Ther. 97: 55-85.

    Lopez-Salon, M., Alonso, M., Vianna, M.R., Viola, H., Mello e Souza, T., Izquierdo, I., Pasquini, J.M., and Medina, J.H. (2001) The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur. J. Neurosci. 14:1820-1826.

    Luscher, C., Nicoll, R.A., Malenka, R.C., and Muller, D. (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat. Neurosci. 3: 545-550.

    Luscher, C., Xia, H., Beattie, E.C., Carroll, R.C., von Zastrow, M., Malenka, R.C., and Nicoll, R.A. (1999) Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24: 649-658.

    Luthi, A., Chittajallu, R., Duprat, F., Palmer, M.J., Benke, T.A., Kidd, F.L., Henley, J.M., Isaac, J.T., and Collingridge, G.L. (1999) Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron 24: 389-399.

    Malenka, R.C. and Nicoll, R.A. (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanism. Trends Neirosci. 16: 521-527.

    Malinow, R. and Malenka, R.C. (2002) AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25: 103-126.

    Mammen, A.L., Huganir, R.L., and O’Brien, R.J. (1997) Redistribution and stabilization of cell surface glutamate receptors during synapse formation.
    J. Neurosci. 17: 7351-7358.

    Man, H.Y., Lin, J.W., Ju, W.H., Ahmadian, G., Liu, L., Becker, L.E., Sheng, M., and Wang, Y.T. (2000) Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. Neuron 25: 649-662.

    Massey, P.V., Johnson, B.E., Moult, P.R., Auberson, Y.P., Brown, M.W.,
    Molnar, E., Collingridge, G.L., Bashir, Z.I. (2004) Differential roles of
    NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation
    and long-term depression. J. Neurosci. 24: 7821-7828.

    Mayer, M.L., Westbrook, G.L., and Guthrie, P.B. (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature (Lond) 309: 261-263.

    Mazzucchelli, C. and Brambilla, R. (2000) Ras-related and MAPK signalling in neuronal plasticity and memory formation. Cell. Mol. Life Sci. 57: 604-611.

    McGaugh, J.L. (1966) Time-dependent processes in memory storage. Science 153: 1351-1358.

    Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H. (1994) Developmental and regional expression in the rat brainand functional properties of four NMDA receptors. Neuron 12: 529-540.

    Moult, P.R., Schnabel, R., Kilpatrick, I.C., Bashir, Z.I., and Collingridge, G.L. (2002) Tyrosine dephosphorylation underlies DHPG-induced LTD. Neuropharmacology. 43: 175-180.

    Mulkey, R.M., Endo, S., Shenolikar, S., and Malenka, R.C. (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369: 486-488.

    Mulkey, R.M., Herron, C.E., Malenka, R.C. (1993) An essential role for protein phosphatases in hippocampal long-term depression. Science 261: 1051-1055.

    Mulkey, R.M. and Malenka, R.C. (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of hippocampus. Neuron 9: 967-975.

    Murray, H.J. and O'Connor, J.J. (2003) A role for COX-2 and p38 mitogen activated protein kinase in long-term depression in the rat dentate gyrus in vitro. Neuropharmacology 44: 374-380.

    Naisbitt, S., E. Kim, J.C. Tu, B. Xiao, C. Sala, J. Valtschanoff, R.J. Weinberg,P.F. Worley, and M. Sheng. (1999) Shank, a novel family of postsynaptic Density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23: 569-582.

    Nakanishi, S. (1994) Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 13: 1031-1037.

    Nowak, L., Bregestovski, P., Asher, P., Herbet, A., and Prochianz, A. (1984)
    Magnesium gates glutamate-activated channels in mouse central neurins.Nature (Lond) 307: 462-465.

    O'Dell, T.J. and Kandel, E.R. (1994) Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learn Mem. 1: 129-139.

    Ottersen, O.P., Davanger, S., Storm-Mathisen, J. (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H] glycine and [3H] GABA uptake. Exp. Brain Res. 66: 211-221.

    Ottersen, O.P., Fischer, B.O., Rinvik, E., Storm-Mathisen, J. (1987) Putative
    amino acid transmitter in the amygdala. In: Excitatory Amino Acid and Epilepsy. (Schwarcz and Ben-Ari, eds), pp53-66. New York: Raven Press.

    Oliet, S.H., Malenka, R.C, and Nicoll, R.A. (1997) Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18: 969-982.

    Palmer, M.J., Irving, A.J., Seabrook, G.R., Jane, D.E., and Collingridge, G.L. (1997) The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36: 1517-1532.

    Patrick, G.N., Bingol, B., Weld, H.A., and Schuman, E.M. (2003) Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr. Biol. 13: 2073-2081.

    Premkumar, L.S. and Auerbach, A. (1997) Stochiometry of recombinant N-methyl-D-aspartate receptor channels inferred from single channel current patterns. J. Gen. Physiol. 110: 485-502.

    Rumbaugh, G. and Vicini, S. (1999) Distinct synaptic and extrasynaptic NMDA receptors in developing cerebellar granule neurons. J. Neurosci. 19: 10603-10610.

    Sakimura, K., Kutsuwada, T., Ito, I., Manabe, T., Takayama, C., et al. (1995) Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 373: 151-155.

    Sala, C., Rudolph-Correia, S., Sheng, M. (2000) Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J. Neurosci. 20: 3529-3536.

    Schlesinger, D. H., Goldstein, G., and Niall, H. D. (1975) The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry 14: 2214-2218.

    Schnell, E, Sizemore, M, Karimzadegan, S, Chen, L, Bredt, DS, Nicoll, RA.
    (2002) Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl. Acad. Sci. USA. 99:13902-13907.

    Scoville, W.B. and Milner, B. (1957) Loss of recent memory after bilateral
    hippocampal lesions. J. Neurol. Neurosurg. Psychiat. 20: 11-21.

    Shi, S.H., Hayashi, Y., Esteban, J.A., Malinow, R. (2001) Subunit-specific
    rules governing AMPA receptor trafficking to synapsesin hippocampal pyramidal neurons. Cell 105: 331-343.

    Shi, S.H., Hayashi, Y., Petralia, R.S., Zaman, S.H., Wenthold, R.J., Svoboda, K., and Malinow, R. (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284: 1811-1816.

    Sheng, M. and Kim, E. (2000) The Shank family of scaffold proteins.Science 113: 1851-1856.

    Sheng, M., Cummings, J., Roldan, L.A., Jan, Y.N, and Jan, L.Y. (1994) Changing subunit composition of the heteromeric NMDA receptors during development of rat cortex. Nature 368: 144-147.

    Sheng, M, Sala, C. (2001) PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24: 1-29.

    Shobe, J. (2002) The role of PKA, CaMKII, and PKC in Avoidance Conditioning: Permissive or Instructive ? Neurobiol. Learn. Mem. 77: 291-312.

    Snyder, E.M., Philpot, B.D., Huber, K.M., Dong, X., Fallon, J.R., and Bear,
    M.F. (2001) Internalization of ionotropic glutamate receptors in response
    to mGluR activation. Nat. Neurosci. 4: 1079-1085.

    Song, I, Huganir, RL. (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25: 578-588.

    Steward, O. and Schuman, E.M. (2001) Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24: 299-325.

    Stocca, G. and Vicini, S. (1998) Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J. Physiol. (Lond) 507: 13-24.

    Takeuchi, M., Y. Hata, K. Kirao, A. Toyoda, M. Irie, and Y. Takai. SAPAPs.
    (1997) A family of PSD-95/SAP90-associated proteins localized at
    postsynaptic density. J. Biol. Chem. 272: 11943-11951.

    Takumi, Y., Matsubara, A., Rinvik, E.& Ottersen, O. P. (1999) The arrangement of glutamate receptors in excitatory synapses. Ann. N.Y. Acad. Sci. 868: 474-482.

    Tang, S.J., Reis, G., Kang, H., Gingras, A.C., Sonenberg, N., and Schuman, E.M. (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. USA. 99: 467-472.

    Tang, Y.P., Shimizu, E., Dube, G.R., Rampon, C., Kerchner, G.A., et al. (1999) Genetic enhancement of learning and memory in mice. Nature 401: 63-69.

    Thiels, E., Xie, X., Yeckel, M.F., Barrionuevo, G., and Berger, T.W.(1996) NMDA receptor-dependent LTD in different subfields of hippocampus in vivo and in vitro. Hippocampus 6: 43-51.

    Tovar, K.R. and Westbrook, G.L. (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19: 4180-4188.

    Tovar, K.R. and Westbrook, G.L. (2002) NMDA receptors at hippocampal synapses. Neuron 34: 255-264.

    Wang, Y.T., and Linden, D.J. (2000) Expression of cerebellar longterm depression requires postsynaptic clathrin-mediated endocytosis.Neuron 25:
    635-647.

    Watkins, J.C. and Evans, R.H. (1981) Excitatory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol. 21: 165-204.

    Watkins, J.C., Krogsgaard-Larsen, P., and Honore, T. (1990) Struture-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11: 25-33.

    Wenzel, A., Fritschy, J.M., Mohler, H., Benke, D. (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins.J. Neurochem. 68:
    469-478.

    Wickens, J.R. and Abraham1, W.C. (1991) Heterosynaptic long-term depression is facilitated by blockade of inhibition in area CA1 of the hippocampus. Neurosci. Lett. 130: 128-132.

    Wilkinson, K.D., Urban, M.K., and Haas, A.L. (1980) Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J. Biol. Chem. 255: 7529-7575.

    Yang, X.D., Connor, J.A., and Faber, D.S. (1994) Weak excitation and simultaneous inhibition induce long-term depression in hippocampal CA1 neurons. J. Neurophysiol. 71: 1586-1590.

    Young, A.B. and Fagg, G.E. (1990) Excitatory amino acid receptors in the brain: menbrane binding and receptor autoradiographic approaches. Trends Pharmacol. Sci. 11: 126-133.

    Zalutsky, R.A. and Nicoll, R.A. (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248: 1619-1624.

    Zho, W.M., You, J.L., Huang, C.C., and Hsu, K.S. (2002) The group I metabotropic glutamate receptor agonist (S)-3, 5- dihydroxyphenylglycine induces a novel form of depotentiation in the CA1 region of the hippocampus. J. Neurosci. 22: 8838-8849.

    Zhou, Q., Xiao, M.Y., and Nicoll, R.A. (2001) Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA. 98: 1261-1266.

    下載圖示 校內:2009-08-17公開
    校外:2010-08-17公開
    QR CODE