| 研究生: |
游淯琪 You, Yu-Chi |
|---|---|
| 論文名稱: |
探討PDMS表面聲波晶片之側壁效應:V形排列電極及方形彎曲微流道的影響 Investigation of Sidewall Effect in PDMS-SAW Microchips: Effect of V-Shape Arranged IDTs and Square-Bended Microchannels |
| 指導教授: |
莊怡哲
Juang, Yi-Je |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 聲波微流體 、聚二甲基矽氧烷 、指叉狀電極 、聯結層 、側壁效應 |
| 外文關鍵詞: | acoustic microfluidics, polydimethyl siloxane (PDMS), interdigital transducer (IDT), coupling layer, sidewall effect |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面聲波微流體晶片是以聲輻射力作為驅動力來操控粒子。與傳統聚焦技術不同的是,該方法不需對粒子進行前處理,便可使流道內粒子根據本身性質而聚集排列。此外,還具備高生物相容性及低能耗的優點,因此適用於任何微粒或細胞。然而,在聚二甲基矽氧烷(PDMS)與表面聲波駐波(SSAW)組成的表面聲波微流體晶片中,具正聲波對比因子的聚苯乙烯(PS)粒子不僅會在流道內的壓力節點上對準排列外,亦會在流道側壁發生側壁效應(sidewall effect)而產生聚焦,使得粒子無法有效形成單一聚焦。
本研究旨在探討改變表面聲波微流體晶片中指叉狀電極(IDT)的設計參數(如電極傾斜角度和單根電極寬度等)及微流道的幾何結構對側壁效應的影響,同時比較不同晶片貼合方式(聯結層貼合/直接貼合)下的效果差異,藉此達到消除側壁效應的目的。研究結果顯示,V形排列電極(V-shape arranged IDTs)設計及方彎流道(square-bended microchannels)結構皆有助於使原本受側壁效應影響的粒子遠離流道側壁,其中又以添加突出物之雙方彎流道直接貼合晶片時的效果最佳。
In the PDMS, SSAW-based microfluidic chips, the particles with positive contrast factor are not only focused on the pressure node but also aggregated on the sidewall. This phenomenon is referred to as the sidewall effect and, as a result, particle manipulation such as sorting, counting becomes less effective. In this study, eliminating the sidewall effect by utilizing different designs of IDTs and microchannels was proposed. The processing parameters such as the tilted angle, the stripline width of V-shape arranged IDTs, single square-bended and double square-bended channels, microchannels with protrusion, with and without coupling layer were investigated.
The results showed that the designs of V-shape arranged IDTs and square-bended microchannels were both beneficial to eliminate the sidewall effect. The optimal condition was to use the directly bonded chips and double square-bended channels with protrusions.
[1] A. M. Maxam and W. J. P. o. t. N. A. o. S. Gilbert, "A new method for sequencing DNA," vol. 74, no. 2, pp. 560-564, 1977.
[2] F. Sanger, S. Nicklen, and A. R. J. P. o. t. n. a. o. s. Coulson, "DNA sequencing with chain-terminating inhibitors," vol. 74, no. 12, pp. 5463-5467, 1977.
[3] S. Zhang, Y. Wang, P. Onck, and J. den Toonder, "A concise review of microfluidic particle manipulation methods," Microfluidics and Nanofluidics, vol. 24, no. 4, p. 24, 2020/03/19 2020.
[4] D. Huh, W. Gu, Y. Kamotani, J. B. Grotberg, and S. J. P. m. Takayama, "Microfluidics for flow cytometric analysis of cells and particles," vol. 26, no. 3, p. R73, 2005.
[5] H. Tsutsui and C.-M. J. M. r. c. Ho, "Cell separation by non-inertial force fields in microfluidic systems," vol. 36, no. 1, pp. 92-103, 2009.
[6] J. Shi, D. Ahmed, X. Mao, S.-C. S. Lin, A. Lawit, and T. J. J. L. o. a. C. Huang, "Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW)," vol. 9, no. 20, pp. 2890-2895, 2009.
[7] D. Di Carlo, D. Irimia, R. G. Tompkins, and M. J. P. o. t. N. A. o. S. Toner, "Continuous inertial focusing, ordering, and separation of particles in microchannels," vol. 104, no. 48, pp. 18892-18897, 2007.
[8] P. Pattanayak et al., "Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives," vol. 25, no. 12, pp. 1-28, 2021.
[9] X. Xuan, J. Zhu, C. J. M. Church, and nanofluidics, "Particle focusing in microfluidic devices," vol. 9, no. 1, pp. 1-16, 2010.
[10] M. Yamada and M. J. L. o. a. C. Seki, "Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics," vol. 5, no. 11, pp. 1233-1239, 2005.
[11] M. Yamada and M. J. A. c. Seki, "Microfluidic particle sorter employing flow splitting and recombining," vol. 78, no. 4, pp. 1357-1362, 2006.
[12] M. Yamada et al., "Microfluidic devices for size-dependent separation of liver cells," vol. 9, no. 5, pp. 637-645, 2007.
[13] R. Aoki, M. Yamada, M. Yasuda, M. J. M. Seki, and nanofluidics, "In-channel focusing of flowing microparticles utilizing hydrodynamic filtration," vol. 6, no. 4, pp. 571-576, 2009.
[14] D. A. Ateya et al., "The good, the bad, and the tiny: a review of microflow cytometry," vol. 391, no. 5, pp. 1485-1498, 2008.
[15] J. Godin, C. H. Chen, S. H. Cho, W. Qiao, F. Tsai, and Y. H. J. J. o. b. Lo, "Microfluidics and photonics for Bio‐System‐on‐a‐Chip: A review of advancements in technology towards a microfluidic flow cytometry chip," vol. 1, no. 5, pp. 355-376, 2008.
[16] H. Chu, I. Doh, and Y.-H. J. L. o. a. C. Cho, "A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes," vol. 9, no. 5, pp. 686-691, 2009.
[17] M. P. MacDonald, G. C. Spalding, and K. J. N. Dholakia, "Microfluidic sorting in an optical lattice," vol. 426, no. 6965, pp. 421-424, 2003.
[18] Y. Zhao, B. S. Fujimoto, G. D. Jeffries, P. G. Schiro, and D. T. J. O. e. Chiu, "Optical gradient flow focusing," vol. 15, no. 10, pp. 6167-6176, 2007.
[19] F. Petersson, A. Nilsson, H. Jönsson, and T. J. A. c. Laurell, "Carrier medium exchange through ultrasonic particle switching in microfluidic channels," vol. 77, no. 5, pp. 1216-1221, 2005.
[20] F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, and T. J. A. c. Laurell, "Free flow acoustophoresis: microfluidic-based mode of particle and cell separation," vol. 79, no. 14, pp. 5117-5123, 2007.
[21] G. Goddard, J. C. Martin, S. W. Graves, and G. J. C. P. A. T. J. o. t. I. S. f. A. C. Kaduchak, "Ultrasonic particle‐concentration for sheathless focusing of particles for analysis in a flow cytometer," vol. 69, no. 2, pp. 66-74, 2006.
[22] G. R. Goddard, C. K. Sanders, J. C. Martin, G. Kaduchak, and S. W. J. A. c. Graves, "Analytical performance of an ultrasonic particle focusing flow cytometer," vol. 79, no. 22, pp. 8740-8746, 2007.
[23] J. Shi, X. Mao, D. Ahmed, A. Colletti, and T. J. J. L. o. a. C. Huang, "Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW)," vol. 8, no. 2, pp. 221-223, 2008.
[24] L. J. P. o. t. L. m. S. Rayleigh, "On waves propagated along the plane surface of an elastic solid," vol. 1, no. 1, pp. 4-11, 1885.
[25] J. Shi, D. Ahmed, X. Mao, and T. J. Huang, "Surface acoustic wave (SAW) induced patterning of micro beads in microfluidic channels," in 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008, pp. 26-29.
[26] G. J. A. D. Olivadoti, "Sensing, analyzing, and acting in the first moments of an earthquake," vol. 35, no. 1, pp. 1-3, 2001.
[27] R. M. White and F. W. J. A. p. l. Voltmer, "Direct piezoelectric coupling to surface elastic waves," vol. 7, no. 12, pp. 314-316, 1965.
[28] J. Curie and P. J. B. d. m. Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées," vol. 3, no. 4, pp. 90-93, 1880.
[29] A. Quddious et al., "Disposable, paper-based, inkjet-printed humidity and H2S gas sensor for passive sensing applications," vol. 16, no. 12, p. 2073, 2016.
[30] C. Campbell, Surface Acoustic Wave Devices for Mobile and Wireless Communications, Four-Volume Set. Academic press, 1998.
[31] J. Devkota, P. R. Ohodnicki, and D. W. J. S. Greve, "SAW sensors for chemical vapors and gases," vol. 17, no. 4, p. 801, 2017.
[32] B. Matthias and J. J. P. R. Remeika, "Ferroelectricity in the ilmenite structure," vol. 76, no. 12, p. 1886, 1949.
[33] K.-K. Wong, Properties of lithium niobate (no. 28). IET, 2002.
[34] T. Saiki, K. Okada, Y. J. E. Utsumi, and C. i. Japan, "Highly efficient liquid flow actuator operated by surface acoustic waves," vol. 94, no. 10, pp. 10-16, 2011.
[35] M. B. Mazalan, A. M. Noor, Y. Wahab, S. Yahud, and W. S. W. K. J. M. Zaman, "Current Development in Interdigital Transducer (IDT) Surface Acoustic Wave Devices for Live Cell In Vitro Studies: A Review," vol. 13, no. 1, p. 30, 2022.
[36] Y. Gao, M. Wu, Y. Lin, and J. J. M. Xu, "Acoustic microfluidic separation techniques and bioapplications: A review," vol. 11, no. 10, p. 921, 2020.
[37] K. Yosioka and Y. J. A. A. u. w. A. Kawasima, "Acoustic radiation pressure on a compressible sphere," vol. 5, no. 3, pp. 167-173, 1955.
[38] J. Shi, H. Huang, Z. Stratton, Y. Huang, and T. J. J. L. o. a. C. Huang, "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)," vol. 9, no. 23, pp. 3354-3359, 2009.
[39] Z. Mao et al., "Experimental and numerical studies on standing surface acoustic wave microfluidics," vol. 16, no. 3, pp. 515-524, 2016.
[40] J. Baek, B. Kang, C. Rhyou, H. J. S. Lee, and A. B. Chemical, "Effect of the sound speed mismatch between fluid and channel on the particle alignment in a standing surface acoustic wave device," vol. 346, p. 130442, 2021.
[41] J. Nam, Y. Lee, S. J. M. Shin, and nanofluidics, "Size-dependent microparticles separation through standing surface acoustic waves," vol. 11, no. 3, pp. 317-326, 2011.
[42] J. Nam, H. Lim, D. Kim, and S. J. L. o. a. C. Shin, "Separation of platelets from whole blood using standing surface acoustic waves in a microchannel," vol. 11, no. 19, pp. 3361-3364, 2011.
[43] X. Ding et al., "Cell separation using tilted-angle standing surface acoustic waves," vol. 111, no. 36, pp. 12992-12997, 2014.
[44] D. J. Collins et al., "Self-aligned acoustofluidic particle focusing and patterning in microfluidic channels from channel-based acoustic waveguides," vol. 120, no. 7, p. 074502, 2018.
[45] D. J. Collins, R. O’Rorke, A. Neild, J. Han, and Y. J. S. M. Ai, "Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves," vol. 15, no. 43, pp. 8691-8705, 2019.
[46] J. Zhang, W. Li, M. Li, G. Alici, N.-T. J. M. Nguyen, and nanofluidics, "Particle inertial focusing and its mechanism in a serpentine microchannel," vol. 17, no. 2, pp. 305-316, 2014.
[47] Z. Wu, B. Willing, J. Bjerketorp, J. K. Jansson, and K. J. L. o. a. C. Hjort, "Soft inertial microfluidics for high throughput separation of bacteria from human blood cells," vol. 9, no. 9, pp. 1193-1199, 2009.
[48] M. J. C. p. i. p. C. Krstić, noise, and p. detonation, "M| XING CONTROL FOR JET FLOWS," p. 87, 2005.
[49] S. Li et al., "Standing surface acoustic wave (SSAW)-based cell washing," vol. 15, no. 1, pp. 331-338, 2015.
[50] H. D. Young and R. A. Freedman, Sears and Zemansky's University Physics. Addison-Wesley, 2000.