簡易檢索 / 詳目顯示

研究生: 王齊中
Wang, Chi-Choung
論文名稱: 非穩態流場所激發彈性管振動量測 及其生醫應用
Measurement of flow induced vibration of an elastic tube and its biomedical application
指導教授: 楊天祥
Yang, Tian-Shiang
陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 84
中文關鍵詞: 非侵入式量測非穩態流場體激發振動液耦合
外文關鍵詞: non-invasive measurement, unsteady flow, flow-induced vibration, fluid--structure interaction
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      本文以人體的循環系統—心血管系統的非穩態流場振盪現象為研究的出發點,去探討新型的生醫流體感測器的設計。目前生醫流體感測器的潮流除了縮小化之外,更致力於非侵入式量測的導向,其目的無非在於盡量讓身體在量測過程中所受到的傷害降到最小。若把人體的心血管系統等效成機械系統,我們利用彈性矽膠軟管和電磁閥等機械元件建構一套模擬真實動脈系統的機械裝置進行實驗,當中的力學模型包括非穩態流場激發振動,固液耦合等等。本文旨在討論如何設計一套非侵入式的量測方式去偵測此等效機械系統,藉由彈性軟管管壁振動量的非侵入式量測,進一步得到彈性管內部壓力,流率,壓力波波速,彈性管材料機械性質等特性,以最少的已知物理參數預測出最多的未知變量,並且討論如何將此套量測方式應用在真實動脈系統,因為動脈系統量測上的工作需求即為利用最不傷害人體的方式得到最多的生醫流體信號。並且我們以所建構的動脈系統等效機械模型進行實驗的結果印證我們所設計的量測方法在概念設計上的可行性。

    ABSTRACT
     This thesis is concerned with the circulation system of human body---the cardiovascular system---and pays particular attention to the oscillatory flow phenomenon in the artery. On the basis of hemodynamic principles, here we discuss the possibility of designing a new type of bio-fluid sensor for measuring the mechanical properties of arteries non-invasively. Technically, we model the artery by an equivalent mechanical system consisting of an elastic tube conveying pulsatile fluid flow, and study the dynamic fluid--structure interaction between the tube wall and the fluid flow within. Based upon the model, we propose a methodology of measuring the mechanical properties of the equivalent mechanical system by non-invasive means. Specifically, the periodic dilation of the elastic tube wall is measured by optical sensors, and, by determining the time-delay of such measurements at two separate locations, the elastic wave speed along the tube wall is deduced. Furthermore, the Young’s modulus of the tube wall material is calculated from the wave speed, and the fluid pressure and flow rate inside the tube can then be predicted accordingly. In other words, the methodology attempts use a minimal set of input data to estimate as many unknown system parameters as possible. We have also constructed an experimental apparatus consisting of a silica elastic tube conveying water flow modulated by a solenoid valve, so that our methodology can be tested. Experimental results indicate that the methodology does yield reliable estimates of the material properties of the tube wall. The clinical adaptation of the proposed methodology is also briefly discussed in this thesis.

    目錄 摘要………………………………………………………………………………...I 英文摘要…………………………………………………………………………..II 誌謝………………………………………………………………………………..III 目錄………………………………………………………………………………...V 表目錄………………………………………………………………………...…VIII 圖目錄……………………………………………………………………………..IX 符號說明…………………………………………………………………………..XI 第一章 緒論…………………………………………………………………….1 1.1 研究動機……………………………………………………………….1 1.2 相關力學知識及其演進……………………………………………….2 1.3 研究目的……………………………………………………………….3 1.4 本文架構………………………………………………………………..4 第二章 背景介紹………………………………………………………………..6 2.1前言……………………………………………………………………….6 2.2 理論部分文獻回顧………………………………………………………6 2.2.1 血液循環理論…………………………………………………….6 2.2.2 心血管系統流場穩態理論………………………………………..7 2.2.3 壓力波在動脈系統傳遞理論……………………………………..7 2.2.4 Windkessel理論…………………………………………………...8 2.2.5 非穩態流場壓力和流率的關係式……………………………….8 2.2.6 理論部份文獻回顧小結及其與本文研究目的之關聯…………..9 2.3 各式血壓量測方法介紹………………………………………………….9 2.3.1 非入侵式量測…………………………………………………….9 2.3.1.1 科氏音血壓量測法………………………………………..9 2.3.1.2 張力計( tonometry) 血壓量測法………………………...11 2.3.2 侵入式量測……………………………………………………...11 2.4 各式血液流率量測方法介紹…………………………………………..12 2.4.1 電磁式血液流量計……………………………………………...12 2.4.2 時間差式超音波血液流量計…………………………………...13 2.4.3 都卜勒式血液流量計……………………………………………15 2.5 血管材料機械性質檢測方式…………………………………………..15 2.6 各種血管直徑變化測量方式…………………………………………...15 2.6.1應變規法…………………………………………………………17 2.6.2 超音波量測法…………………………………………………...17 2.6.3 光學測量法……………………………………………………...17 2.7 小結……………………………………………………………………..18 第三章 數學模型建立………………………………………………………… 19 3.1 前言……………………………………………………………………..19 3.2壓力波在彈性管中傳播理論……………………………………………19 3.2.1 Moens-Korteweg模型……………………………………………19 3.2.2 Bergel厚壁圓管壓力波傳播修正模型………………………...23 3.3楊氏係數和壓力應變( , pressure strain )值的關聯性………………25 3.4楊氏係數和柔度的關係…………………………………………………26 3.5管壁膨脹量與管內壓力的關係…………………………………………27 3.5.1 材料力學厚壁圓管受壓產生形變模型………………………...27 3.5.2 流體動態壓力與管壁位移模型………………………………...28 3.6 非穩態流場壓力與流率的關係………………………………………...29 3.7彈性管結構振動量測數學原理…………………………………………29 3.8小結………………………………………………………………………32 第四章 系統架設與參數設計…………………………………………………34 4.1 概念設計………………………………………………………………...34 4.2 實驗系統空間規劃與硬體架設………………………………………..34 4.2.1 空間規劃………………………………………………………...34 4.2.2 硬體架設………………………………………………………...35 4.2.2.1 電磁閥及其控制電路…………………………………..35 4.2.2.2 工作流體輸送管線架設………………………………..38 4.2.2.3 待測部分架設…………………………………………..39 4.3 致動器與感測器基本規格及其校準…………………………………..43 4.3.1 電磁閥規格………………………………………………………44 4.3.2 DA卡規格………………………………………………………..44 4.3.3 壓力感測器規格及其校準………………………………………44 4.3.4 雷射位移感測器規格……………………………………………46 4.3.5 流量計規格………………………………………………………47 4.4 信號擷取系統…………………………………………………………...47 4.4.1 RC濾波電路……………………………………………………...47 4.4.2 電流-電壓轉換器………………………………………………...48 4.4.3 AD卡……………………………………………………………..49 4.5 設定系統參數…………………………………………………………..50 4.5.1穩態流場相似……………………………………………………..51 4.5.2非穩態流場相似…………………………………………………..51 4.6 實驗程序………………………………………………………………..52 4.7 準靜態測試量測系統…………………………………………………..52 4.8單軸拉伸材料測試………………………………………………………54 4.8.1測試系統………………………………………………………….54 4.8.2 材料試片………………………………………………………...55 4.9 小結……………………………………………………………………..56 第五章 實驗結果與討論……………………………………………………….57 5.1前言………………………………………………………………………57 5.2 波速量測與材料機械性質預測………………………………………...57 5.2.1 利用位移感測器量測彈性管表面振動波波速之結果………………57 5.2.2利用壓力感測器量測流體壓力波波速……………………………….59 5.2.3 壓力波量測結果與討論………………………………………………60 5.3 值準靜態材料測試…………………………………………………..61 5.3.1 值準靜態材料測試結果與討論……………………………...61 5.4 單軸拉伸材料測試比較………………………………………………...63 5.4.1 材料單軸拉伸測試結果與討論…………………………………63 5.4.2 單軸拉伸材料測試結論…………………………………………63 5.5 彈性管表面振動量測…………………………………………………...65 5.5.1 實驗結果與討論…………………………………………………65 5.5.2 小結………………………………………………………………65 5.6 利用振動量量測預測彈性管內部壓力………………………………...69 5.6.1 利用材料力學厚壁圓管受力變形公式預測彈性管內壓力……69 5.6.2 利用流體動態壓力與管壁位移模型預測彈性管內壓力………71 5.7 利用振動量量測預測彈性管流率……………………………………...75 5.7.1 流率預測的相關學理與實驗結果………………………………75 5.8 小結……………………………………………………………………...79 第六章 結論與未來工作……………………………………………………….80 6.1 全文歸納………………………………………………………………..80 6.2 結論……………………………………………………………………..81 6.3 本文貢獻………………………………………………………………..82 6.4 未來工作與展望………………………………………………………..83 參考文獻 全文完

    參考文獻
    [1]Angioplasty,” http://www.med.umich.edu/1libr/aha/aha_angiopl_car.htm”, University of Michigan Health System, USA, 2004.
    [2]吳賢才,”你的動脈硬了嗎?”,科學發展387期,國科會電子期刊,2005年3月。
    [3]小學科學,”http://www.pep.com.cn/200406/ca499212.htm”,人民教育出版社,北京市。
    [4]常州科普之窗,”http://www.czkp.org.cn/nbeml/kxfb-51.htm”,常州市科学技术协会,常州。
    [5]Answers.com,” http://www.answers.com/topic/william-harvey”, Online Encyclopedia , Thesaurus, Dictionary definitions and more,1999~2005.
    [6] medical education presentations for clinicians, students & patients,” http://mednote.co.kr/PHYSIOLOGYBLUE/CcycleNHemodynamics.htm”, Way-CGI 시리즈, Korea, 1998~1999.
    [7]Moens,A.I., “Die pulskwive,” Brill,Leiden, The Netherlands, 1878.
    [8]Korteweg, D.J, “ Ueber die Fortpflanzungesgeschwindigkeit des Schalles in elastischen Rohren,”Ann Physik Chemie, Vol.5, pp.525-542.
    [9]Bergel, D. H. “ The static elastic properties of the arterial wall,” J. Physiol., Vol.156, pp.445-57, 1961.
    [10]Bergel, D. H. “ The dynamic elastic properties of the arterial wall,” J. Physiol., Vol.156, pp.458-69, 1961.
    [11]Frank, O. Die Grundform des arterielen Pulses erste Abhandlung: mathematische Analyse. Z. Biol. 37: 483-526, 1899.
    [12]V.Mushahwar, Richard.Thompson, ” Biological Systems Modeling and Analysis”, http://www.bme.med.ualberta.ca/~courses/bme310/bme310_ModelingLab_Windkessel.pdf, Department of Biomedical Engineering, University of Alberta, Canada, 2005.
    [13]Womersley,J.R., “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,”J.Physiol.Vol127: pp.553-563, 1955.
    [14]Womersley,J.R.,”Oscillation motion of a viscous liquid in a thin-walled elastic tube. I.The linear approximation for long waves. Phil.Mag. Vol46: pp.199-221, 1955.
    [15]Womersley,J.R.,”The mathematical analysis of arterial circulation in a state of oscillation motion,”Wright Air Development Center, Technical Report WADC-TR-56-614, 1957.
    [16]Womersley,J.R.,”Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission,” Phys.Med.Biol.Vol2: pp. 178-187, 1957.
    [17]Merck & Co., Inc., ”http://www.merck.com/mmhe/sec03/ch022/ch022a.html” , Whitehouse Station, NJ, USA, 1995-2005.
    [18]Charlie Goldberg,” A Practical Guide to Clinical Medicine”, UCSD School of Medicine and VA Medical Center, San Diego, California 92093-0611, 2004.
    [19]COLIN medical electronic instruments company, “ http://www.colin-europe.com/pages/tonometry.html”.
    [20]Invasive arterial pressure monitoring, “ http://www.aic.cuhk.edu.hk/web8/art%20line.htm”, The Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, New Territories, HONG KONG, 2005.
    [21]水權資訊網站,”http://wr.wra.gov.tw/new_raws/9101282-3.htm”, 經濟部水利署,2005。
    [22]上海交通大学国家级精品课程检测技术基础, ”http://ie.sjtu.edu.cn/jc/files/zhuanye/liuliang.ppt”, 上海,上海交通大学信息检测技术及仪器系,2005。交
    [23]高血圧老年内科ホームページ, ”http://www.med.kindai.ac.jp/rounai/pwv1.htm”, 近畿大学医学部,日本,2005。
    [24]過去の話題とQ&A, ” http://www.urahp.yokohama-cu.ac.jp/ycu_ht/vessel.htm”, 公立大学法人横浜市立大学附属市民総合医療センター ,日本。
    [25]Malos, A. J., “ An electrical caliper for continuous measurement of relative displacement,” J. Appl. Physiol., Vol.17, pp.131-4, 1962.
    [26]Gow, B. S., “ An electrical caliper for measurement of pulsatile arterial diameter changes in vivo,” J. Appl. Physiol., Vol.20, pp.1122-6, 1966.
    [27]Levenson, J. A., Peronneau, P.P., Simon, A. C., Safar, M. E., “ Pulse Doppler determination of diameter, blood flow velocity and volumic flow of brachial artery in man,” Cardiovas. Res., Vol.15, pp.164-70, 1981.
    [28]Safar, M. E., Peronneau, P. P., Levenson, J. A., Totomoukouo, J. A. Simon, A. C. “ Pulse Doppler: diameter, velocity and flow of the brachial artery in sustained essential hypertension,” Circulation, Vol.63, pp.393-400, 1981.
    [29]Bergel, D.H. , “ The dynamic elastic properties if the arterial wall,” J.Physiol.,Vol.156, pp 458-469, 1961.
    [30]Maryovitz, H. N., Roy, J, “ Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter”, Am. J. Physiol., Vol 245, H1031-8, 1983.
    [31] 陳敬修,”利用非侵入式Plethysmography信號評估手術病患舒張壓變化趨勢之研究”,國立中山大學機械與機電工程研究所碩士論文,中華民國九十三年六月。
    [32]K. B. Chandran,” http://www.engineering.uiowa.edu/~bme155/pulsatileflowmodels.pdf”, unsteady flow models, 51:155 Cardiovascular Fluid Mechanics Spring 2003, The University of Iowa, College of Engineering, 2003.
    [33]Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, ed.4, New York: Dover Publications, 1927.
    [34]Bramwell, J. C., and Hill, A.V., “The velocity of the pulse wave in man”,
    Proc. R. Soc. Lond.[Biol] Vol.93, pp.298-306, 1922.
    [35]Aneurysms,” http://www.merck.com/mmhe/sec03/ch035/ch035b.html“, Merck & Co., Inc., Whitehouse Station, NJ, USA, 1995~2005.

    [36] Fung, Y. C. (Yuan-cheng), Biomechanics :circulation, Springer , New-York , 1997.
    [37] 許瑞峰,”微小材料機械特性測試系統之設計製作與其在電子封裝與高分子材料上之應用,”國立成功大學機械工程研究所碩士論文,中華民國九十二年七月。
    [38]Fung, Y. C. (Yuan-cheng), Biomechanics : mechanical properties of living tissues , Springer-Verlag, New York, 1981.
    [39]Yang, Wen-Jei, Biothermal-fluid sciences :principles and applications , Hemisphere Pub, New York, 1989.
    [40]Caro, C. G. (Colin Gerald), The Mechanics of the circulation, Oxford Univ. Press, Oxford, 1978.
    [41]Paidoussis, Michael P., Fluid-structure interactions :slender structures and axial flow , Elsevier Academic Press, Inc., San Diego, CA, 1998.
    [42]Mazumdar, J. (Jagannath), Biofluids mechanics, World Scientific, Singapore, 1992.
    [43]Nicholas, Wilmer W./O'Rourke, Michael F./McDonald, Donald A. , McDonald's blood flow in arteries :theoretic, experimental, and clinical principles, Lea & Febiger, Philadelphia, 1990.
    [44]Katys, G. P. (Georgi Petrovich), Continuous measurement of unsteady flow, Pergamon Press, Oxford, 1964.
    [45]Chen, Shoei-sheng, Flow-induced vibration of circular cylindrical structures, Hemisphere Pub. Corp, Washington, 1987.
    [46]Karakawa, Masanori/Igarashi, Katsuro, Mathematical approach to
    cardiovascular disease :mechanics of blood circulation, Kokuseido Publishing, Tokyo, 1998.
    [47]Milnor, William R., Hemodynamics, Williams & Wilkins, Baltimore, 1989.
    [48]Power, H., Bio-fluid mechanics, Computational Mechanics Publications, Southampton, 1995.
    [49]Ghista, Dhanjoo N./Naumann, Alexander., Cardiovascular engineering, ”Karger, Basel, 1983.
    [50]Y. Y. L. Wang, C. C. Chang, J. C. Chen, T. L. Hsu, and W. K. Wang,“ Pressure wave propagation in a simplified artery with large radial dilation,”IEEE Eng. Med. Biol. Mag., vol. 16, no. 1, pp. 51–56, 1997.
    [51]Zhang, X. ,M. Fatemi, and J. Greenleaf.
    ”Vibro-acoustography for modal analysis arterial vessels,” IEEE International Symposium on Biomedical Imaging. 2002.
    [52]Brinton, BS, Todd J.; Cotter, MD, Bruno; Kailasam, MBBS, Mala T.; Brown, MD, David L.; Chio, PhD, Shiu-Shin,“Development and Validation of a Noninvasive Method to Determine Arterial Pressure and Vascular Compliance,” The American journal of cardiology,” Vol 80, pp. 323-330, 1997.
    [53]Walker RD,Smith RE,Sheriff SB,et al.”Latex vessels with customized compliance for use in arterial flow models,” J Physiol Meas, 20(6) : pp.277 -286. 1999.
    [54]Liu Z, Brin K, and Yin F. “Estimation of total arterial compliance: an improved method and evaluation of current methods,” Am J Physiol HeartCirc Physiol 251: H588–H600, 1986.
    [55]Yuh-Ying Lin Wang, Ming-Yie Jan, Gin-Chung Wang, Jian-Guo Bau and Wei-Kung Wang,“Pressure pulse velocity is related to the longitudinal elastic properties of the artery,” Physiol. Meas. Vol25, pp.1397-1403, 2004.
    [56]Jukka Hast,“Self-mixing interferometry and its applications in noninvasive pulse detection,” University of Oulu press,USA, 2003.
    [57]Arndt,J.O., Klauske, J., Mersch, F., “The diameter of the intact carotid artery in man and its change with pulse pressure,” Pfluger Arch. Ges. Physiol., Vol.301, pp. 230-40, 1968.
    [58]Arndt, J. O., Stegall, H. F., Wicke, H.J., “Mechanics of the aorta in vivo,” Circ. Res., Vol.28, pp. 693-704, 1971.
    [59]Busse, R., Bauer, R.D., Schubert, A., Summa, Y., Bumm, P., Wetterer, E., “ The mechanical properties of exposed human common carotid arteries, in vivo.” Basic Res. Cardiol., Vol.74, pp.545-554, 1979.
    [60]Busse, R., Bauer, R. D., Schubert, A., Summa, Y., Wetterer, E., “ An improved method for the determination of the pulse transmission characteristics of artery in vivo,” Circ. Res., Vol.44, pp.630-6, 1979.
    [61]Merillon, J. P., Motte, G., Fruchaud, J., Masquet, C., Gourgon, R. C., “ Evaluation of the elasticity and characteristic impedance of the ascending aorta in man,” Cardiovas. Res., Vol.12, pp.401-6, 1978.
    [62]Peterson, L. H., Jensen, R. E., Parnell. J., “ Mechanical properties of arteries in vivo,” Circ. Res., Vol.8, pp.622-39, 1960.
    [63]Simon, A. C., Laurent, S., Levenson, J. A., Bouthier, J.D., Safar, M. E., “ Estimation of forearm arterial compliance in normal and hypertensive men from simultaneous pressure and flow measurements in the brachial artery, using a pulsed Doppler devices and a first order arterial model during diastole,” Cardiovasc. Res., Vol.17, pp.331-8, 1983.
    [64]Stefanadis, C., Wooley, C. F., Bush, C. A., Kolibash, A. J., Boudoulas, H., “ Aortic distensibility abnormalities in coronary artery disease,” Am .J. Cardiol., Vol.59, pp.1300-4., 1987.

    下載圖示 校內:2006-07-22公開
    校外:2006-07-22公開
    QR CODE