簡易檢索 / 詳目顯示

研究生: 范竣程
Fan, Chun-Cheng
論文名稱: 2-MIB與亞硝基胺類分析技術開發及水與啤酒監測研究
Method Development and Monitoring Applications for 2-MIB and N-Nitrosamines in Water and Beer
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 70
中文關鍵詞: 亞硝基胺類固相微萃取風險評估2-MIB次氯酸鈉
外文關鍵詞: N-Nitrosamines, Solid-phase microextraction, Risk assessment, 2-MIB
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣水庫優養化嚴重,水源水質的優養化常伴隨著藻類及藍綠菌的增生,藻類大量滋生不僅造成環境的汙染,更衍生出其他重要的飲用水問題,如臭味物質及消毒副產物問題,本研究將針對這兩種問題進行探討。
    亞硝基胺類(N-Nitrosamines)、尤其是亞硝基二甲胺(N-nitrosodimethylamine, NDMA)具有高度致癌風險,且常出現於飲用水、水環境、及啤酒中,近年來廣泛受到注意。傳統上分析亞硝基胺類,因要求偵測極限低,除常用固相萃取法(solid phase extraction, SPE)前濃縮處理外,尚須配合液相或氣相層析串聯質譜儀,進行分析分析。通常使用水量大、且須長時間前處理。本研究探討開發簡易分析方法以分析飲用水以及啤酒的多種亞硝基胺類,並應用開發之方法,調查台灣多處飲用水及多種啤酒中亞硝基胺類濃度,以掌握該類污染物之分布現況。
    本研究以固相微萃取(Solid-phase micro extraction, SPME),搭配化學游離氣相質譜(PCI/GC/MS)分析,以氨氣為反應氣體,分析包括七種常見亞硝基胺類(NDMA, NDEA, NMEA, NDPA, NDBA, NPyr 及NPip)。研究結果顯示,本研究在85°C的溫度下,SPME萃取60 mins後,進在GC注入口熱脫附(4 mins),可以有效進行偵測,七種亞硝基胺類之方法偵測介於0.12-0.79ng-L-1間。研究中並對台灣10座水廠清水、及10種市售啤酒進行樣品分析,結果顯示,台灣水廠中,除金門濃度達10.2 ng-L-1外,其餘水廠濃度均低於2 ng-L-1,其中以亞硝基二甲胺(NDMA)濃度最高,但也僅達2.4 ng-L-1,整體顯示飲用水風險低。啤酒樣品分析結果顯示,亞硝基胺類濃度,較清水高出10-100倍,且NDMA濃度最高可達100 ng-L-1,但仍低於美國啤酒建議值(5,000 ng-L-1),而Npip於啤酒中濃度較NDMA高得多範圍從4.1至5.3μg-L-1。風險評估顯示,NDMA在飲用水的致癌風險是所有亞硝基胺類最高的,平均癌症風險為6.3910-06,對於其他亞硝基胺類風險均低於10-06。對於啤酒中亞硝基胺類的致癌風險,NDMA、NDEA、NDPA和NPip在1.5010-5至4.6210-4範圍內,而其他亞硝胺基胺類的風險要低得多。目前啤酒尚未有關於NPip的信息,也沒有關於NDEA及NDMA較新的資訊,因此這些調查數據可用於日後亞硝胺類的危害性評估參考。
    臭味物質2-Methylisoborneol (2-MIB)是飲用水源中最常見的揮發化合物之一。由於2-MIB可以被生物降解,如果需要分析在採樣後不立即分析處理,通常需要用保存劑,氯化汞常被用於當成保存劑使用。由於氯化汞具有毒性,所以需要更為便宜、以及毒性更小的替代化學品。本研究中探討應用水處理過程中常用的兩種化學物質,次氯酸鈉及高錳酸鉀,作為2-MIB在水中保存之保存劑的可行性。保存實驗首先在加有2-MIB的去離子水中進行,並分別在4°C與25°C下進行14天的對照組實驗,實驗組以次氯酸鈉與高錳酸鉀作為保存劑進行相同實驗。結果顯示,在所有測試條件下,添加了兩種化學品的水樣中2-MIB濃度在14天內幾乎保持不變,顯示氧化和揮發不會導致系統中2-MIB的損失。進一步將兩種氧化劑應用於三種不同的水庫水樣進行2-MIB保存實驗。實驗結果顯示,由於在天然水中形成二氧化錳顆粒並將2-MIB吸附到顆粒上,因此用高錳酸鹽保存可能低估了樣品中的2-MIB濃度。相對地,由於2-MIB受氯氧化比率可以忽略,且可以抑制2-MIB被生物降解,若能在水中維持0.5 mg-L-1的餘氯濃度,氯可以當成天然水中2-MIB的良好保存劑。

    Occurrence and risk related to nitrosamines, a group of carcinogenic compounds found in some drinking waters and beers, are studied. An analytical method using a solid-phase micro-extraction (SPME) along with gas chromatography (GC) and mass spectrometry (MS) was developed to determine seven N-nitrosamines in drinking water and beer, including N-nitrosomethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosodimethylamine (NDMA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip), and N-nitrosodinbutylamine (NDBA). The analysis can be completed in 70 mins, and only a 4 mL sample is required, with a detection limit of 0.1 to 0.8 ng-L-1 for the seven nitrosamines in water and 6 to 15.7 ng-L-1 in beer. The method was applied to analyze water samples collected from 10 reservoirs and their associated drinking water treatment plants in Taiwan and 10 beer samples from 6 brands with factories located in 6 countries. In the drinking water samples, all seven N-nitrosamines were detected, with NDMA having the highest level at 10.2 ng-L-1. In the beer samples, NDMA was detected at much lower concentrations (0.12 to 0.23 μg-L-1) than the 5 μg-L-1 US standard, while NPip was detected at much higher concentrations (4.1 to 5.3 μg-L-1) compared to NDMA. The risk assessment indicates that the risk associated with NDMA is the highest among the studied N-nitrosamines in Taiwan’s drinking water, with an average cancer risk of 6.3910-6. For other nitrosamines, the risks are all below 10-6. For the risks associated with N-nitrosamines in beer, NDMA, NDEA, NDPA, and NPip are in the range of 1.5010-5 to 4.6210-4, while that for other nitrosamines are much lower. As for beer, no information for NPip and no modern information for NDEA and NDPA have previously been available, and more studies about nitrosamines in beer are suggested for better estimation and control of the risks associated with consumption of beer.
    2-Methylisoborneol (2-MIB) is one of the most commonly observed taste and odor (T&O) compounds present in drinking water sources. As it is biodegradable, a preservation agent, typically mercury chloride, is needed if the water is not analyzed right after sampling. Since mercury is a toxic metal, an alternative chemical that is cheaper and less toxic is desirable. In this study, two chemicals commonly used in water treatment processes, chlorine (as sodium hypochlorite) and KMnO4 (potassium permanganate), are studied to determine their feasibility as preservation agents for 2-MIB in water. Preservation experiments were first conducted in deionized water spiked with 2-MIB and with chlorine or permanganate at 4 and 25 °C. The results indicate that 2-MIB concentrations in the water samples spiked with both chemicals remained almost constant within 14 days for all the tested conditions, suggesting that oxidation and volatilization did not cause the loss of 2-MIB in the system. The experiments were further conducted for three different reservoir water samples with 30–60 ng-L-1 of indulgent 2-MIB. The experimental results demonstrated that preservation with permanganate may have underestimated the 2-MIB concentration in the samples as a result of the formation of manganese dioxide particles in natural water and adsorption of 2-MIB onto the particles. Chlorine was demonstrated to be a good preservation agent for all three tested natural waters since oxidation of 2-MIB was negligible and biodegradation was inhibited. When the residual chlorine concentrations were controlled to be higher than 0.5 mg-L-1 on the final day (day 14) of the experiments, the concentration reduction of 2-MIB became lower than 13% at both of the tested temperatures. The results demonstrated that sodium hypochlorite can be used as an alternative preservation agent for 2-MIB in water before analysis.

    摘要 I Abstract IV Acknowledgements VII Table of Contents IX List of Figures XI List of Tables XII Chapter I Introduction 1 1.1. Background 1 1.2. Proposed and Objectives 3 Chapter II Literatures review 5 2.1. Cyanobacteria 5 2.2. Disinfection by-products 6 2.3. N-Nitrosamines 7 2.2.1. Properties of N-Nitrosamines 7 2.2.2. N-Nitrosamines in beer 8 2.2.3. Regulations of N-nitrosamines in drinking water 9 2.4. Taste and odor (T&O) compounds 14 2.5. Sample preservation of T&O compounds 15 Chapter III Methods and Materials 17 3.1. Standards and solutions 17 3.2. Sample analysis 18 3.2.1. N-Nitrosamines analysis 18 3.2.2. 2-Methylisoborneol analysis 19 3.3. Sample collection for N-Nitrosamines 21 3.4. Sample collection for 2-Methylisoborneol 23 3.5. Risk assessment method 24 Chapter IV Results and Discussion 26 4.1. Nitrosamines in water and beer 26 4.1.1. Chromatogram of the N-Nitrosamines 26 4.1.2. Method evaluation 27 4.1.3. Analysis of nitrosamines in drinking water and beer 31 4.1.4. Cancer Risk Assessment 38 4.2. Sample preservation for 2-MIB 46 4.2.1. Impact of Chlorine on 2-MIB Concentration in Deionized Water 46 4.2.2. Impact of Permanganate on 2-MIB Concentration in Natural Water 48 4.2.3. Impact of Chlorine on 2-MIB Concentration in Natural Water 52 Chapter V Conclusions 57 References 60

    AHA (2006) Alcohol, wine and cardiovascular disease.
    American Public Health Association (APHA), A.W.W.A.A., & Water Environment Federation (WEF). (2014) Standard methods for the examination of water and wastewater (22th ed.).
    Andrade, R., Reyes, F.G.R. and Rath, S. (2005) A method for the determination of volatile N-nitrosamines in food by HS-SPME-GC-TEA. Food Chemistry 91(1), 173-179.
    Aragón, M., Marcé, R.M. and Borrull, F. (2013) Determination of N-nitrosamines and nicotine in air particulate matter samples by pressurised liquid extraction and gas chromatography-ion trap tandem mass spectrometry. Talanta 115(0), 896-901.
    Asami, M., Oya, M. and Kosaka, K. (2009) A nationwide survey of NDMA in raw and drinking water in Japan. Science of the Total Environment 407(11), 3540-3545.
    Banerjea, R. (1950) The use of potassium permanganate in the disinfection of water. Ind Med Gaz 85(5), 214-219.
    Barrett, S., Hwang, C., Carrie Guo, Y. and Andrews, S. (2003) Occurrence of NDMA in drinking water: a North American Survey, 2001-2002, p. 2003.
    Bei, E., Shu, Y., Li, S., Liao, X., Wang, J., Zhang, X., Chen, C. and Krasner, S. (2016) Occurrence of nitrosamines and their precursors in drinking water systems around mainland China. Water Research 98, 168-175.
    Boerjesson, T.S., Stoellman, U.M. and Schnuerer, J.L. (1993) Off-odorous compounds produced by molds on oatmeal agar: Identification and relation to other growth characteristics. Journal of Agricultural and Food Chemistry 41(11), 2104-2111.
    Boland, J.J. and DeArment, W.E. (1965) Potassium Permanganate Removal of Tastes and Odors From Paper Mill Wastes. Journal (American Water Works Association) 57(11), 1451-1455.
    Bond, T., Goslan, E.H., Parsons, S.A. and Jefferson, B. (2011) Treatment of disinfection by-product precursors. Environ Technol 32(1-2), 1-25
    Brookes, P.A. (1982) The effects of nitrosodimethylamine palliatives on malt properties. Journal of the Institute of Brewing 88(4), 256-260.
    Bruchet, A., Duguet, J.P. and Suffe, I.H. (2004) Role of oxidants and disinfectants on the removal, masking and generation of tastes and odours. Reviews in Environmental Science and Biotechnology 3(1), 33-41.
    Cal/EPA (2006) Public Health Goal for N-Nitrosodimethylamine in Drinking Water. Agency, C.E.P., Assessment, O.o.E.H.H. and Branch, P.E.T. (eds).
    California Department of Public Health(2010)History of NDMARelated Activities in Drinking Water.
    CDPH (2009) NDMA and other nitrosamines—Drinking water issues.
    Cha, W., Fox, P. and Nalinakumari, B. (2006) High-performance liquid chromatography with fluorescence detection for aqueous analysis of nanogram-level N-nitrosodimethylamine. Analytica Chimica Acta 566(1), 109-116.
    Charrois, J.W.A., Arend, M.W., Froese, K.L. and Hrudey, S.E. (2004) Detecting N-nitrosamines in Drinking Water at Nanogram Per Liter Levels Using Ammonia Positive Chemical Ionization. Environmental Science & Technology 38(18), 4835-4841.
    Charrois, J.W.A. and Hrudey, S.E. (2007) Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations. Water Research 41(3), 674-682.
    Chen, W.-H., Wang, C.-Y. and Huang, T.-H. (2016) Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern Taiwan. Chemosphere 161, 546-554.
    Chen, Y.-M., Hobson, P., Burch, M.D. and Lin, T.-F. (2010) In situ measurement of odor compound production by benthic cyanobacteria. Journal of Environmental Monitoring 12(3), 769-775.
    Cheng, R.C., Hwang, C.J., Andrews-Tate, C., Guo, Y.B., Carr, S. and Suffet, I.H. (2006) Alternative Methods for the Analysis of NDMA and other Nitrosamines in Water. Journal American Water Works Association 98(12), 82-96.
    Cleasby, J.L., Baumann, E.R. and Black, C.D. (1964) Effectiveness of Potassium Permanganate for Disinfection. Journal (American Water Works Association) 56(4), 466-474.
    Cook, D., Newcombe, G. and Sztajnbok, P. (2001) The application of powdered activated carbon for mib and geosmin removal: predicting pac doses in four raw waters. Water Research 35(5), 1325-1333.
    Dai, N. and Mitch, W.A. (2013) Relative Importance of N-Nitrosodimethylamine Compared to Total N-Nitrosamines in Drinking Waters. Environmental Science & Technology 47(8), 3648-3656.
    Deusch, O., Landan, G., Roettger, M., Gruenheit, N., Kowallik, K.V., Allen, J.F., Martin, W. and Dagan, T. (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25(4), 748-761.
    Dickschat, J.S., Nawrath, T., Thiel, V., Kunze, B., Müller, R. and Schulz, S. (2007) Biosynthesis of the Off-Flavor 2-Methylisoborneol by the Myxobacterium Nannocystis exedens. Angewandte Chemie International Edition 46(43), 8287-8290.
    Dionigi, C.P., Lawlor, T.E., McFarland, J.E. and Johnsen, P.B. (1993) Evaluation of geosmin and 2-methylisoborneol on the histidine dependence of TA98 and TA100 Salmonella typhimurium tester strains. Water Research 27(11), 1615-1618.
    Eaton, R.W. and Sandusky, P. (2009) Biotransformations of 2-Methylisoborneol by Camphor-Degrading Bacteria. Applied and Environmental Microbiology 75(3), 583-588.
    Farrimond, M. and Fielding, M. (1999) Disinfection By-Products in Drinking Water. Fielding, M. and Farrimond, M. (eds), p. v, Woodhead Publishing.
    Freitas, R.M., Perilli, T.A.G. and Ladeira, A.C.Q. (2013) Oxidative Precipitation of Manganese from Acid Mine Drainage by Potassium Permanganate. Journal of Chemistry 2013, 8.
    Frommberger, R. (1989) N-nitrosodimethylamine in German beer. Food and Chemical Toxicology 27(1), 27-29.
    Giglio, S., Chou, W.K.W., Ikeda, H., Cane, D.E. and Monis, P.T. (2011) Biosynthesis of 2-Methylisoborneol in Cyanobacteria. Environmental Science & Technology 45(3), 992-998.
    Grebel, J.E. and Suffet, I.H.M. (2007) Nitrogen-phosphorus detection and nitrogen chemiluminescence detection of volatile nitrosamines in water matrices: Optimization and performance comparison. Journal of Chromatography A 1175(1), 141-144.
    Grebel, J.E., Young, C.C. and Suffet, I.H.M. (2006) Solid-phase microextraction of N-nitrosamines. Journal of Chromatography A 1117(1), 11-18.
    Greene, S., Alexander, M. and Leggett, D. (1981) Formation of N-Nitrosodimethylamine During Treatment of Municipal Waste Water by Simulated Land Application1. Journal of Environmental Quality 10(3), 416-421.
    Hardwick, W.A., Hickman, D.H., Jangaard, N.O., Ladish, W.J. and Meilgaard, M.C. (1982) N-Nitrosodimethylamine in malt beverages—Anticipatory action by the brewing industry. Regulatory Toxicology and Pharmacology 2(1), 38-66.
    He, Y. and Cheng, H. (2016) Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation. Water Research 94, 305-314.
    Ho, L., Hoefel, D., Bock, F., Saint, C.P. and Newcombe, G. (2007) Biodegradation rates of 2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors. Chemosphere 66(11), 2210-2218.
    Hsieh, W.-H., Chang, D.-W. and Lin, T.-F. (2014) Occurrence and Removal of Earthy-Musty Odorants in Two Waterworks in Kinmen Island, Taiwan. Journal of Hazardous, Toxic, and Radioactive Waste 18(3), 04014012.
    Huang, J., Graham, N., Templeton, M.R., Zhang, Y., Collins, C. and Nieuwenhuijsen, M. (2009a) A Comparison of the Role of Two Blue-Green Algae in THM and HAA Formation. Water Research 43(12), 3009-3018.
    Huang, J., Graham, N., Templeton, M.R., Zhang, Y., Collins, C. and Nieuwenhuijsen, M. (2009b) A comparison of the role of two blue–green algae in THM and HAA formation. Water Research 43(12), 3009-3018.
    Huang, M.-C., Chen, H.-C., Fu, S.-C. and Ding, W.-H. (2013) Determination of volatile N-nitrosamines in meat products by microwave-assisted extraction coupled with dispersive micro solid-phase extraction and gas chromatography – Chemical ionisation mass spectrometry. Food Chemistry 138(1), 227-233.
    Hung, H.-W., Lin, T.-F., Chiu, C.-H., Chang, Y.-C. and Hsieh, T.-Y. (2010) Trace Analysis of N-Nitrosamines in Water Using Solid-Phase Microextraction Coupled with Gas Chromatograph–Tandem Mass Spectrometry. Water, Air & Soil Pollution 213(1), 459-469.
    IRIS, U.S.E. (2010) Nitrosamines Assessment Summary.
    Izaguirre, G. and Taylor, W.D. (2004) A guide to geosmin- and MIB-producing cyanobacteria in the United States, pp. 19-24.
    Izaguirre, G., Wolfe, R.L. and Means, E.G. (1988) Degradation of 2-methylisoborneol by aquatic bacteria. Appl Environ Microbiol 54(10), 2424-2431.
    Izquierdo-Pulido, M., Barbour, J.F. and Scanlan, R.A. (1996) N-nitrosodimethylamine in Spanish beers. Food and Chemical Toxicology 34(3), 297-299.
    Jüttner, F. and Watson, S.B. (2007) Biochemical and Ecological Control of Geosmin and 2-Methylisoborneol in Source Waters. Applied and Environmental Microbiology 73(14), 4395-4406.
    Jurado-Sanchez, B., Ballesteros, E. and Gallego, M. (2007a) Comparison of the sensitivities of seven N-nitrosamines in pre-screened waters using an automated preconcentration system and gas chromatography with different detectors. J Chromatogr A 1154(1-2), 66-73.
    Jurado-Sanchez, B., Ballesteros, E. and Gallego, M. (2007b) Gas chromatographic determination of N-nitrosamines in beverages following automatic solid-phase extraction. J Agric Food Chem 55(24), 9758-9763.
    Kakimoto, M., Ishikawa, T., Miyagi, A., Saito, K., Miyazaki, M., Asaeda, T., Yamaguchi, M., Uchimiya, H. and Kawai-Yamada, M. (2014) Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata. Journal of Plant Physiology 171(3), 292-300.
    Kaleli, H.A. and Islam, M.R. (1997) Effect of temperature on the growth of wastewater bacteria. Toxicological & Environmental Chemistry 59(1-4), 111-123.
    Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D. and Stal, L. (2002) Dinitrogen fixation in the world's oceans. Biogeochemistry 57(1), 47-98.
    Kim, T.-K., Moon, B.-R., Kim, T., Kim, M.-K. and Zoh, K.-D. (2016) Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions. Chemosphere 162, 157-164.
    Komarova, N.V. and Velikanov, A.A. (2001) Determination of Volatile N-Nitrosamines in Food by High-Performance Liquid Chromatography with Fluorescence Detection. Journal of Analytical Chemistry 56(4), 359-363.
    Krauss, M. and Hollender, J. (2008) Analysis of nitrosamines in wastewater: exploring the trace level quantification capabilities of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem 80(3), 834-842.
    Krone, N., Hughes, B.A., Lavery, G.G., Stewart, P.M., Arlt, W. and Shackleton, C.H.L. (2010) Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). The Journal of Steroid Biochemistry and Molecular Biology 121(3–5), 496-504.
    Kubacki, S.J., Havery, D.C. and Fazio, T. (1989) Volatile N‐nitrosamines in polish malt and beer. Food Additives & Contaminants 6(1), 29-33.
    Lalezary, S., Pirbazari, M. and McGuire, M.J. (1986) Oxidation of Five Earthy-Musty Taste and Odor Compounds. Journal (American Water Works Association) 78(3), 62-69.
    Lauderdale, C.V., Aldrich, H.C. and Lindner, A.S. (2004) Isolation and characterization of a bacterium capable of removing taste- and odor-causing 2-methylisoborneol from water. Water Res 38(19), 4135-4142.
    Lee, C., Schmidt, C., Yoon, J. and von Gunten, U. (2007) Oxidation of N-Nitrosodimethylamine (NDMA) Precursors with Ozone and Chlorine Dioxide:  Kinetics and Effect on NDMA Formation Potential. Environmental Science & Technology 41(6), 2056-2063.
    Liew, D., Culbert, J., Linge, K., Farré, M.J., Knight, N., Morran, J., Halliwell, D., Newcombe, G. and Charrois, J.W.A. (2015) Recent Advances in Disinfection By-Products, pp. 135-149, American Chemical Society.
    Lin, T.F., Liu, C.L., Yang, F.C. and Hung, H.W. (2003) Effect of Residual Chlorine on the Analysis of Geosmin, 2-MIB and MTBE in Drinking Water Using the SPME Technique. Water Research 37(1), 21-26.
    Magdic, S. and Pawliszyn, J.B. (1996) Analysis of organochlorine pesticides using solid-phase microextraction. Journal of Chromatography A 723(1), 111-122.
    McCurry, D.L., Krasner, S.W., von Gunten, U. and Mitch, W.A. (2015) Determinants of disinfectant pretreatment efficacy for nitrosamine control in chloraminated drinking water. Water Research 84, 161-170.
    McDonald, J.A., Harden, N.B., Nghiem, L.D. and Khan, S.J. (2012) Analysis of N-nitrosamines in water by isotope dilution gas chromatography–electron ionisation tandem mass spectrometry. Talanta 99(0), 146-154.
    McIntyre, T. and Scanlan, R.A. (1993) Nitrosamines produced in selected foods under extreme nitrosation conditions. Journal of Agricultural and Food Chemistry 41(1), 101-102.
    McWeeny, D.J. (1983) Nitrosamines in beverages. Food Chemistry 11(4), 273-287.
    Milton, J. (2006) Paradigms Lost, pp. 535-538, Butterworth-Heinemann, Burlington.
    Mitch, W.A., Gerecke, A.C. and Sedlak, D.L. (2003a) A N-Nitrosodimethylamine (NDMA) Precursor Analysis for Chlorination of Water and Wastewater. Water Research 37(15), 3733-3741.
    Mitch, W.A., Sharp, J.O., Trussell, R.R., Valentine, R.L., Alvarez-Cohen, L. and Sedlak, D.L. (2003b) N-Nitrosodimethylamine (NDMA) as a Drinking Water Contaminant: A Review. Environmental Engineering Science 20(5), 389-404.
    Moyers, B. and Wu, J.S. (1985) Removal of organic precursors by permanganate oxidation and alum coagulation. Water Research 19(3), 309-314.
    Munch, J.W. and Bassett, M.V. (2006) Method development for the analysis of N-nitrosodimethylamine and other N-nitrosamines in drinking water at low nanogram/liter concentrations using solid-phase extraction and gas chromatography with chemical ionization tandem mass spectrometry. Journal of Aoac International 89(2), 486-497.
    Nawrocki, J. and Andrzejewski, P. (2011) Nitrosamines and Water. Journal of Hazardous Materials 189(1-2), 1-18.
    Nerenberg, R. and Rittmann, B.E. (2000) Ozone/biofiltration for removing MIB and geosmin.
    Newcombe, G., Morrison, J. and Hepplewhite, C. (2002) Simultaneous adsorption of MIB and NOM onto activated carbon. I. Characterisation of the system and NOM adsorption. Carbon 40(12), 2135-2146.
    NRC (1999) Risk Assessment of Radon in Drinking Water, The National Academies Press, Washington, DC.
    Oikawa, E., Shimizu, A. and Ishibashi, Y. (1995) 2-methylisoborneol degradation by the cam operon from Pseudomonas putida PpG1. Water Science and Technology 31(11), 79-86.
    Paerl, H.W. and Paul, V.J. (2012) Climate change: Links to global expansion of harmful cyanobacteria. Water Research 46(5), 1349-1363.
    Park, J.-e., Seo, J.-e., Lee, J.-y. and Kwon, H. (2015) Distribution of Seven N-Nitrosamines in Food. Toxicological Research 31(3), 279-288.
    Perez, D.M., Alatorre, G.G., Alvarez, E.B., Silva, E.E. and Alvarado, J.F.J. (2008) Solid-phase microextraction of N-nitrosodimethylamine in beer. Food Chemistry 107(3), 1348-1352.
    Planas, C., Palacios, O., Ventura, F., Rivera, J. and Caixach, J. (2008a) Analysis of Nitrosamines in Water by Automated SPE and Isotope Dilution GC/HRMS Occurrence in the Different Steps of a Drinking Water Treatment Plant, and in Chlorinated Samples from a Reservoir and a Sewage Treatment Plant Effluent. Talanta 76(4), 906-913.
    Planas, C., Palacios, Ó., Ventura, F., Rivera, J. and Caixach, J. (2008b) Analysis of nitrosamines in water by automated SPE and isotope dilution GC/HRMS: Occurrence in the different steps of a drinking water treatment plant, and in chlorinated samples from a reservoir and a sewage treatment plant effluent. Talanta 76(4), 906-913.
    Plumlee, M.H., López-Mesas, M., Heidlberger, A., Ishida, K.P. and Reinhard, M. (2008) N-nitrosodimethylamine (NDMA) removal by reverse osmosis and UV treatment and analysis via LC–MS/MS. Water Research 42(1–2), 347-355.
    Pozzi, R., Bocchini, P., Pinelli, F. and Galletti, G.C. (2011) Determination of nitrosamines in water by gas chromatography/chemical ionization/selective ion trapping mass spectrometry. Journal of Chromatography A 1218(14), 1808-1814.
    Qian, Y., Wu, M., Wang, W., Chen, B., Zheng, H., Krasner, S.W., Hrudey, S.E. and Li, X.-F. (2014) Determination of 14 Nitrosamines at Nanogram per Liter Levels in Drinking Water. Analytical Chemistry 87(2), 1330-1336.
    Queiroz, M.E.C., Silva, S.M., Carvalho, D. and Lanças, F.M. (2001) COMPARISON BETWEEN SOLID–PHASE EXTRACTION METHODS FOR THE CHROMATOGRAPHIC DETERMINATION OF ORGANOPHOSPHORUS PESTICIDES IN WATER. Journal of Environmental Science and Health, Part B 36(5), 517-527.
    Rand, J.L., Gagnon, G.A. and Knowles, A. (2014) Establishing minimum free chlorine residual concentration for microbial control in a municipal drinking water distribution system. Water Practice and Technology 9(4), 491-501.
    Richardson, S.D. (2003) Disinfection By-Products and other Emerging Contaminants in Drinking Water. Trends in Analytical Chemistry 22(10), 666-684.
    Richardson, S.D. and Ternes, T.A. (2014) Water analysis: emerging contaminants and current issues. Anal Chem 86(6), 2813-2848.
    Ripollés, C., Pitarch, E., Sancho, J.V., López, F.J. and Hernández, F. (2011) Determination of eight nitrosamines in water at the ng L−1 levels by liquid chromatography coupled to atmospheric pressure chemical ionization tandem mass spectrometry. Analytica Chimica Acta 702(1), 62-71.
    Risticevic, S., Vuckovic, D., Lord, H.L. and Pawliszyn, J. (2012) Comprehensive Sampling and Sample Preparation. Pawliszyn, J. (ed), pp. 419-460, Academic Press, Oxford.
    Rook, J.J. (1974) Formation of Haloforms during Chlorination of Natural Waters. Water Treatment an Examination 23, 234-243.
    Scanlan, R.A., Barbour, J.F. and Chappel, C.I. (1990) A survey of N-nitrosodimethylamine in U.S. and Canadian beers. Journal of Agricultural and Food Chemistry 38(2), 442-443.
    Schöller, C.E.G., Gürtler, H., Pedersen, R., Molin, S. and Wilkins, K. (2002) Volatile Metabolites from Actinomycetes. Journal of Agricultural and Food Chemistry 50(9), 2615-2621.
    Schmidt, C.K. and Brauch, H.-J. (2008) N,N-Dimethylsulfamide as Precursor for N-Nitrosodimethylamine (NDMA) Formation upon Ozonation and its Fate During Drinking Water Treatment. Environmental Science & Technology 42(17), 6340-6346.
    Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J. and Czaja, A.D. (2002) Laser--Raman imagery of Earth's earliest fossils. Nature 416(6876), 73-76.
    Schreiber, I.M. and Mitch, W.A. (2006a) Nitrosamine Formation Pathway Revisited: The Importance of Chloramine Speciation and Dissolved Oxygen. Environmental Science & Technology 40(19), 6007-6014.
    Schreiber, I.M. and Mitch, W.A. (2006b) Nitrosamine Formation Pathway Revisited:  The Importance of Chloramine Speciation and Dissolved Oxygen. Environmental Science & Technology 40(19), 6007-6014.
    Seaman, S. and Tessier, L. (1982) N-Nitrosodimethylamine (NDMA) and N-Nitrosoproline (NPRO) in Malt and Beer. Canadian Institute of Food Science and Technology Journal 15(3), xx.
    Sen, N.P., Seaman, S.W., Bergeron, C. and Brousseau, R. (1996) Trends in the Levels of N-Nitrosodimethylamine in Canadian and Imported Beers. Journal of Agricultural and Food Chemistry 44(6), 1498-1501.
    Shah, A.D. and Mitch, W.A. (2012) Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation Pathways. Environmental Science & Technology 46(1), 119-131.
    Son, M., Cho, D.G., Lim, J.H., Park, J., Hong, S., Ko, H.J. and Park, T.H. (2015) Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance. Biosensors and Bioelectronics 74, 199-206.
    Spiegelhalder, B., Eisenbrand, G. and Preussmann, R. (1979) Contamination of beer with trace quantities of N-nitrosodimethylamine. Food Cosmet Toxicol 17(1), 29-31.
    Spiegelhalder, B., Eisenbrand, G. and Preussmann, R. (1980a) Occurrence of volatile nitrosamines in food: a survey of the West German market. IARC scientific publications (31), 467-479.
    Spiegelhalder, B., Eisenbrand, G. and Preussmann, R. (1980b) Volatile nitrosamines in food. Oncology 37(4), 211-216.
    Srinivasan, R. and Sorial, G.A. (2011) Treatment of taste and odor causing compounds 2-methyl isoborneol and geosmin in drinking water: A critical review. Journal of Environmental Sciences 23(1), 1-13.
    Suffet, I.H.M.C., Ana; Chou, David; McGuire, Michael J.; Butterworth, Steve (1996) AWWA Taste and Odor Survey. American Water Works Association (AWWA), & Water Environment 88, Number 4, 168-180.
    Sun, D., Yu, J., An, W., Yang, M., Chen, G. and Zhang, S. (2013) Identification of causative compounds and microorganisms for musty odor occurrence in the Huangpu River, China. Journal of Environmental Sciences 25(3), 460-465.
    Suurnäkki, S., Gomez-Saez, G.V., Rantala-Ylinen, A., Jokela, J., Fewer, D.P. and Sivonen, K. (2015) Identification of geosmin and 2-methylisoborneol in cyanobacteria and molecular detection methods for the producers of these compounds. Water Research 68, 56-66.
    Tate, R.L., III and Alexander, M. (1975) Stability of Nitrosamines in Samples of Lake Water, Soil, and Sewage. Journal of the National Cancer Institute 54(2), 327-330.
    Tian, X.y., Han, X.k. and Huang, Z.h. (2010) Experimental Study on Combing Chlorine and Potassium Permanganate to Inactivate Bacteria, pp. 1-3.
    Tomkins, B.A. and Griest, W.H. (1996) Determinations of N-Nitrosodimethylamine at Part-per-Trillion Concentrations in Contaminated Groundwaters and Drinking Waters Featuring Carbon-Based Membrane Extraction Disks. Analytical Chemistry 68(15), 2533-2540.
    Tomkins, B.A., Griest, W.H. and Higgins, C.E. (1995) Determination of N-Nitrosodimethylamine at Part-per-Trillion Levels in Drinking Waters and Contaminated Groundwaters. Analytical Chemistry 67(23), 4387-4395.
    Tricker, A.R. and Preussmann, R. (1991a) Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutation Research/Genetic Toxicology 259(3), 277-289.
    Tricker, A.R. and Preussmann, R. (1991b) Volatile and nonvolatile nitrosamines in beer. Journal of Cancer Research and Clinical Oncology 117(2), 130-132.
    Tucker, C.S. and Boyd, C.E. (1977) Relationships between Potassium Permanganate Treatment and Water Quality. Transactions of the American Fisheries Society 106(5), 481-488.
    Tung, S.-C., Lin, T.-F., L Liu, C. and D Lai, S. (2004a) The effect of oxidants on 2-MIB concentration with the presence of cyanobacteria.
    Tung, S.C., Lin, T.F., Liu, C.L. and Lai, S.D. (2004b) The effect of oxidants on 2-MIB concentration with the presence of cyanobacteria. Water Sci Technol 49(9), 281-288.
    Tung, S.C., Lin, T.F., Yang, F.C. and Liu, C.L. (2008) Seasonal change and correlation with environmental parameters for 2-MIB in Feng-Shen Reservoir, Taiwan. Environ Monit Assess 145(1-3), 407-416.
    TWEPA (2012) Environmental testing - Methods Detection limits ( NIEA-PA107). Environmental Analysis laboratory EPA.
    U.S.EPA (1992) EXPOSURE AND RISK ASSESSMENT
    Fundamentals of Exposure and Risk Assessment.
    U.S.EPA (1993) Integrated risk information system (IRIS), Office of research and development. National center for environmental assessment Accessed 25 October 2009.
    U.S.EPA (2012) Integrated Risk Information System (IRIS) N-Nitrosodimethylamine U.S. Environmental Protection Agency.
    U.S.EPA (2013) Monitoring the Occurrence of Unregulated Drinking Water Contaminants.
    U.S.FDA (1988) CPG Sec. 510.600 Dimethylnitrosamine in Malt Beverages.
    U.S.FDA (2005a) CPG Sec. 510.600 Dimethylnitrosamine in Malt Beverages.
    U.S.FDA (2005b) CPG Sec. 578.500 Dimethylnitrosamine (DMNA) in Barley Malt.
    U.S.FDA (2011) Risk & Safety Assessment.
    Wainwright, T. (1981) NITROSODIMETHYLAMINE: FORMATION AND PALLIATIVE MEASURES. Journal of the Institute of Brewing 87(4), 264-265.
    Walker, E.A., Castegnaro, M., Garren, L., Toussaint, G. and Kowalski, B. (1979) Intake of volatile nitrosamines from consumption of alcohols. J Natl Cancer Inst 63(4), 947-951.
    Wang, W., Hu, J., Yu, J. and Yang, M. (2010) Determination of N-nitrosodimethylamine in drinking water by UPLC-MS/MS. Journal of Environmental Sciences 22(10), 1508-1512.
    Watson, S.B., Ridal, J., Zaitlin, B. and Lo, A. (2003) Odours from pulp mill effluent treatment ponds: the origin of significant levels of geosmin and 2-methylisoborneol (MIB). Chemosphere 51(8), 765-773.
    WHO (2004) Global Status Report on Alcohol.
    WHO (2008) N-Nitrosodimethylamine in Drinking-Water: Background Document for Development of WHO Guidelines for Drinking-Water Quality, E&FN Spon, WHO, UNESCO, UK.
    Wu, J.-T. and Jüttner, F. (1988) Differential partitioning of geosmin and 2-methylisoborneol between cellular constituents in Oscillatoria tenuis. Archives of Microbiology 150(6), 580-583.
    Yin, F., Ding, J.H. and Liu, S.L. (1982) N-Nitrosodimethylamine in domestic beer in China. Food and Chemical Toxicology 20(2), 213-214.
    Yoon, S., Nakada, N. and Tanaka, H. (2012) A new method for quantifying N-nitrosamines in wastewater samples by gas chromatography—triple quadrupole mass spectrometry. Talanta 97(0), 256-261.
    Yoon, S. and Tanaka, H. (2014) Formation of N-nitrosamines by chloramination or ozonation of amines listed in Pollutant Release and Transfer Registers (PRTRs). Chemosphere 95(0), 88-95.
    Yurchenko, S. and Mölder, U. (2005) N-nitrosodimethylamine analysis in Estonian beer using positive-ion chemical ionization with gas chromatography mass spectrometry. Food Chemistry 89(3), 455-463.
    Zawacki, J. (1992) KMnO4 Contributes to Least Cost Treatment Solution. Water Engineering & Management 139(5), 18-19.
    Zhao, Y.-Y., Boyd, J., Hrudey, S.E. and Li, X.-F. (2006) Characterization of New Nitrosamines in Drinking Water Using Liquid Chromatography Tandem Mass Spectrometry. Environmental Science & Technology 40(24), 7636-7641.
    Zhou, X., Zhang, K., Zhang, T., Li, C. and Mao, X. (2017) An ignored and potential source of taste and odor (T&O) issues-biofilms in drinking water distribution system (DWDS). Appl Microbiol Biotechnol 101(9), 3537-3550.

    無法下載圖示 校內:2023-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE