簡易檢索 / 詳目顯示

研究生: 張鈞皓
Chang, Chun-Hao
論文名稱: 金屬有機框架/MXene複合催化劑應用於電催化產氧反應
Heterostructure of Metal Organic Framework/MXene Catalyst for Enhanced Oxygen Evolution Reaction
指導教授: 陳以文
Chen, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 138
中文關鍵詞: 電解水產氧反應有機金屬框架材料室溫合成MXene
外文關鍵詞: Water splitting, OER, MOF, room-temperature synthesis, MXene
相關次數: 點閱:93下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了配合再生能源間歇的特性,氫能(Hydrogen energy)是一個便利且環保零排碳的潔淨能源載體,傳統上電解水(Water splitting)是快速製氫的方式,然而在陽極進行的產氧反應(Oxygen evolution reaction, OER)為整體電解水帶來較大的活化能障、並阻礙了氫能的發展;近年來研究者將目光轉向過渡金屬化合物(Transition metal compounds),由於過渡金屬可以擁有多種價態的特性,研究這些高度多樣性的過渡金屬氧化物、氫氧化物、雜化物很有機會達到媲美或超過貴金屬催化劑的高效能與穩定性;其中,有機金屬框架材料(Metal organic frameworks, MOFs)是近幾年新興的熱門材料,由配位鍵構成的有序結構產生了孔洞性(Porosity),同時藉由調整金屬及配位基(Ligand)可以控制其孔洞性質與反應活性,除了可以進行氣體吸附與存儲、偵測器以外,MOF的可調整性也被應用在(電)催化材料的設計上。
    本研究設計出一套可於室溫下快速合成MOF的方法,以Co金屬及均苯三甲酸(Benzene-1,3,5-tricarboxylic acid, H3BTC)為主要成分,並添加少量Fe金屬以提升Co金屬之價態使其有利於吸附中間體OH-、對其進行氧化;實驗結果顯示合成出的FeCo7-MOF具有高度結晶性,並具有良好的OER效能及穩定性,經in-situ Raman光譜鑑定顯示,FeCo7-MOF在浸泡氫氧化鉀電解液後快速地轉化為羥基氧化物(Oxyhydroxide, MOOH),並在施加電位下活化為MOO-形式進行催化,與文獻中過渡金屬施加電位後的活化結構一致,證明了活化位點的轉變。
    為了進一步提升FeCo7-MOF材料的導電性,使用了Ti3C2Tx的二維材料進行複合,MXene優異的導電性使複合材料FeCo7-MOF/Ti3C2Tx在高電流密度時比FeCo7-MOF有更低的Tafel斜率,顯示出更優異的催化動力學,同時改變了速率決定步驟,而在電化學阻抗圖譜(Electrochemical impedance spectroscopy, EIS)上可得知電荷轉移電阻降低,證明此複合方式成功地藉由降低電阻提升了OER之表現。

    Water splitting is composed of cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). However, the water splitting efficiency is hindered by a huge overpotential of 1.23 V. Recently, many efforts have been made to study OER electrocatalysts, such as metal oxide, hydroxide, or oxyhydroxide. Besides that, metal organic framework (MOF) is a novel topic in inorganic chemistry, which consists of metal node and organic linker. The framework usually collapses and transforms into OER active site when being applied with potential, making MOF become a candidate for OER electrocatalyst.
    Here, we present the development of a FeCo7-MOF catalyst, which is constructed of highly connective H3BTC ligand. This catalyst can be easily and quickly prepared at room temperature using water as solvent. X-ray powder diffraction and infrared spectroscopy confirm the highly crystalline structure of the coordination network. Meanwhile, we introduce Ti3C2Tx as an additional substrate enhancing the conductivity of FeCo7-MOF.
    The FeCo7-MOF/Ti3C2Tx heterostructure exhibits an overpotential of 260 mV to achieve a current density of 10 mA/cm2 and a corresponding Tafel slope of 48 mV/dec. These findings demonstrate a substantial breakthrough in OER efficiency for a bimetallic MOF heterostructure electrocatalyst system.

    中文摘要 II Extended Abstract III 致謝 XVIII 目錄 XX 表目錄 XXII 圖目錄 XXIII 第1章 、緒論 1 1-1 、前言 1 1-2 、產氧反應(Oxygen evolution reaction, OER) 6 1-3 、鐵質效應(The Fe effect) 10 1-4 、有機金屬框架材料(Metal organic frameworks, MOFs) 15 1-5 、MOF材料應用於電催化OER 19 1-6 、催化劑活化與活性位點 29 1-7 、研究動機 35 第2章 、材料與鑑定方法 40 2-1 、掃描式電子顯微鏡(Scanning electron microscope, SEM) 40 2-2 、穿透式電子顯微鏡(Transmission electron microscope, TEM) 41 2-3 、X光粉末繞射儀(X-ray powder diffractometer, XRD) 44 2-4 、傅立葉轉換紅外光譜(Fourier-transform infrared spectroscopy, FT-IR) 46 2-5 、Raman與in-situ Raman臨場光譜 47 2-6 、BET孔徑分析儀 50 2-7 、X光電子能譜(X-ray photoelectron spectroscopy, XPS) 52 2-8 、電化學系統之架設 54 2-9 、參考電極校正 60 2-10 、儀器設備與藥品清單 62 第3章 、鐵鈷二元有機框架材料用於電催化產氧反應 (FeCo7-MOF for OER) 64 3-1 、實驗方法 64 3-1-1 、FeCox-MOF合成方法 64 3-1-2 、最佳配方篩選 65 3-1-3 、溫度條件測試 68 3-1-4 、插層劑對照組測試 69 3-2 、材料鑑定 70 3-2-1 、電子顯微鏡影像 70 3-2-2 、XRD晶相分析 74 3-2-3 、FT-IR光譜 75 3-2-4 、Raman光譜 77 3-2-5 、BET孔洞吸附測試 78 3-3 、電催化產氧反應 80 3-3-1 、OER效能 80 3-3-2 、電化學分析 83 3-4 、結構與效能間的關聯性 86 3-4-1 、X光電子能譜分析(XPS) 86 3-4-2 、In-Situ Raman光譜 87 第4章 、複合MXene材料進行導電性改善 (FeCo7-MOF/Ti3C2Tx for OER) 89 4-1 、研究動機與實驗方法 89 4-1-1 、MXene二維材料 89 4-1-2 、FeCo7-MOF/Ti3C2Tx合成方法 91 4-2 、材料鑑定 92 4-2-1 、電子顯微鏡影像 92 4-2-2 、XRD晶相分析 93 4-3 、電催化產氧反應 94 4-3-1 、OER效能 94 4-3-2 、電荷轉移電阻分析 95 結論與未來 96 參考文獻 98

    1. Neagu, C., Jansen, H., Gardeniers, H. et al. The Electrolysis of Water: An Actuation Principle for Mems with a Big Opportunity. Mechatronics 10 (4), 571-581, 2000.
    2. Lee, Y. M., Suntivich, J., May, K. J. et al. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J. Phys. Chem. Lett. 3 (3), 399-404, 2012.
    3. Tung, C. W., Hsu, Y. Y., Shen, Y. P. et al. Reversible Adapting Layer Produces Robust Single-Crystal Electrocatalyst for Oxygen Evolution. Nat. Commun. 6 (1), 8106, 2015.
    4. Zhang, B. W., Qi, Z. Y., Wu, Z. S. et al. Defect-Rich 2d Material Networks for Advanced Oxygen Evolution Catalysts. ACS Energy Lett. 4 (1), 328-336, 2019.
    5. Wang, Z. Q., Lei, Q. J., Wang, Z. Y. et al. In-Situ Synthesis of Free-Standing FeNi-Oxyhydroxide Nanosheets as a Highly Efficient Electrocatalyst for Water Oxidation. Chem. Eng. J. 395, 125180, 2020.
    6. Li, S. S., Wang, L., Su, H. et al. Electron Redistributed S-Doped Nickel Iron Phosphides Derived from One-Step Phosphatization of MOFs for Significantly Boosting Electrochemical Water Splitting. Adv. Funct. Mater. 32 (23), 12, 2022.
    7. Chen, S. C., Kang, Z. X., Zhang, X. D. et al. Highly Active Fe Sites in Ultrathin Pyrrhotite Fe7S8 Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution. ACS Cent. Sci. 3 (11), 1221-1227, 2017.
    8. Chen, P. R., Ye, J. S., Wang, H. et al. Recent Progress of Transition Metal Carbides/Nitrides for Electrocatalytic Water Splitting. J. Alloys Compd. 883, 160833, 2021.
    9. Chen, C., Tuo, Y. X., Lu, Q. et al. Hierarchical Trimetallic Co-Ni-Fe Oxides Derived from Core-Shell Structured Metal-Organic Frameworks for Highly Efficient Oxygen Evolution Reaction. Appl. Catal. B-Environ. 287, 119953, 2021.
    10. Liu, Y. Z., Li, X. T., Zhang, S. F. et al. Molecular Engineering of Metal–Organic Frameworks as Efficient Electrochemical Catalysts for Water Oxidation. Adv. Mater. 35 (22), 2300945, 2023.
    11. Tang, W. J., Yu, Z. B., Chen, H. L. et al. Amorphous Dominated Metal Hydroxide-Organic Framework with Compositional and Structural Heterogeneity for Enhancing Anodic Electro-Oxidation Reactions. J. Colloid Interface Sci. 644, 358-367, 2023.
    12. Anantharaj, S., Kundu, S., and Noda, S. "The Fe Effect": A Review Unveiling the Critical Roles of Fe in Enhancing OER Activity of Ni and Co Based Catalysts. Nano Energy 80, 16, 2021.
    13. Li, L., Cao, X. J., Huo, J. J. et al. High Valence Metals Engineering Strategies of Fe/Co/Ni-Based Catalysts for Boosted OER Electrocatalysis. J. Energy Chem. 76, 195-213, 2023.
    14. Yaghi, O. M., Li, G. M., and Li, H. L. Selective Binding and Removal of Guests in a Microporous Metal–Organic Framework. Nature 378 (6558), 703-706, 1995.
    15. He, Y. B., Chen, F. L., Li, B. et al. Porous Metal–Organic Frameworks for Fuel Storage. Coord. Chem. Rev. 373, 167-198, 2018.
    16. Augustus, E. N., Nimibofa, A., Kesiye, I. A. et al. Metal-Organic Frameworks as Novel Adsorbents: A Preview. Am. J. Environ. Prot. 5 (2), 61-67, 2017.
    17. Zhao, S. L., Wang, Y., Dong, J. C. et al. Ultrathin Metal–Organic Framework Nanosheets for Electrocatalytic Oxygen Evolution. Nat. Energy 1 (12), 16184, 2016.
    18. Ge, K., Sun, S. J., Zhao, Y. et al. Facile Synthesis of Two-Dimensional Iron/Cobalt Metal-Organic Framework for Efficient Oxygen Evolution Electrocatalysis. Angew. Chem. Int. Ed. 60 (21), 12097-12102, 2021.
    19. Tian, J. Y., Jiang, F. L., Yuan, D. Q. et al. Electric-Field Assisted In-Situ Hydrolysis of Bulk Metal–Organic Frameworks(MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angew. Chem. Int. Ed. 59 (31), 13101-13108, 2020.
    20. Zou, Z. H., Wang, T. T., Zhao, X. H. et al. Expediting In-Situ Electrochemical Activation of Two-Dimensional Metal–Organic Frameworks for Enhanced OER Intrinsic Activity by Iron Incorporation. ACS Catal. 9 (8), 7356-7364, 2019.
    21. Liu, Y. J., Wang, C., Ju, S. et al. FeCo-Based Hybrid MOF Derived Active Species for Effective Oxygen Evolution. Prog. Nat. Sci.: Mater. Int. 30 (2), 185-191, 2020.
    22. Zhao, X. H., Pattengale, B., Fan, D. H. et al. Mixed-Node Metal–Organic Frameworks as Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Energy Lett. 3 (10), 2520-2526, 2018.
    23. Xie, W. S., Deng, W., Hu, J. B. et al. Construction of Bimetallic FeCo–SA/DABCO Nanosheets by Modulating the Electronic Structure for Improved Electrocatalytic Oxygen Evolution. CrystEngComm 24 (35), 6239-6250, 2022.
    24. Lv, E. J., Yong, J. Y., Wen, J. L. et al. Regulating the Coordination Environment of a Metal–Organic Framework for an Efficient Electrocatalytic Oxygen Evolution Reaction. Energy Adv. 1 (9), 641-647, 2022.
    25. Alagan, M., Chae, S. H., Tae, H. K. et al. Highly Ordered Nanoarrays Catalysts Embedded in Carbon Nanotubes as Highly Efficient and Robust Air Electrode for Flexible Solid-State Rechargeable Zinc-Air Batteries. J. Colloid Interface Sci. 616, 679-690, 2022.
    26. Dong, H., Zhang, X., Yan, X. C. et al. Mixed-Metal-Cluster Strategy for Boosting Electrocatalytic Oxygen Evolution Reaction of Robust Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 11 (48), 45080-45086, 2019.
    27. Xue, Z. Q., Li, Y. L., Zhang, Y. W. et al. Modulating Electronic Structure of Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Adv. Energy Mater. 8 (29), 1801564, 2018.
    28. Burke, M. S., Kast, M. G., Trotochaud, L. et al. Cobalt–Iron (Oxy)Hydroxide Oxygen Evolution Electrocatalysts: The Role of Structure and Composition on Activity, Stability, and Mechanism. J. Am. Chem. Soc. 137 (10), 3638-3648, 2015.
    29. Yuan, S., Feng, L., Wang, K. C. et al. Stable Metal-Organic Frameworks: Design, Synthesis, and Applications. Adv. Mater. 30 (37), 35, 2018.
    30. Yaghi, O. M., Li, H. L., and Groy, T. L. Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid. J. Am. Chem. Soc. 118 (38), 9096-9101, 1996.
    31. McCrory, C. C. L., Jung, S. H., Peters, J. C. et al. Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 135 (45), 16977-16987, 2013.
    32. Zhao, S. L., Tan, C. H., He, C. T. et al. Structural Transformation of Highly Active Metal-Organic Framework Electrocatalysts during the Oxygen Evolution Reaction. Nat. Energy 5 (11), 881-890, 2020.
    33. Moysiadou, A., Lee, S. H., Hsu, C. S. et al. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step. J. Am. Chem. Soc. 142 (27), 11901-11914, 2020.
    34. Seh, Z. W., Kibsgaard, J., Dickens, C. F. et al. Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science 355 (6321), eaad4998, 2017.
    35. Liu, W. X., Niu, X. X., Tang, J. W. et al. Energy-Efficient Anodic Reactions for Sustainable Hydrogen Production via Water Electrolysis. Chem. Synth. 3 (4), 44, 2023.
    36. Gong, Y. X., Yao, J. S., Wang, P. et al. Perspective of Hydrogen Energy and Recent Progress in Electrocatalytic Water Splitting. Chin. J. Chem. Eng. 43, 282-296, 2022.
    37. Moosa, I. S., Kazem, H. A., and Al-Iessi, L. M. R. Production of Hydrogen Via Renewable Energy and Investigation of Water Molecular Changes during Electrolysis Process. J. Renewable Energy Environ. 8 (4), 19-28, 2021.
    38. Aminudin, M. A., Kamarudin, S. K., Lim, B. H. et al. An Overview: Current Progress on Hydrogen Fuel Cell Vehicles. Int. J. Hydrogen Energy 48 (11), 4371-4388, 2023.
    39. Hermesmann, M. and Müller, T. E. Green, Turquoise, Blue, or Grey? Environmentally Friendly Hydrogen Production in Transforming Energy Systems. Prog. Energy Combust. Sci. 90, 100996, 2022.
    40. Mostafa, E. S. Hydrogen Production by Water Electrolysis Technologies: A Review. Results Eng. 20, 101426, 2023.
    41. Suen, N. T., Hung, S. F., Quan, Q. et al. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 46 (2), 337-365, 2017.
    42. Zhou, H. Q., Yu, F., Zhu, Q. et al. Water Splitting by Electrolysis at High Current Densities under 1.6 Volts. Energy Environ. Sci. 11 (10), 2858-2864, 2018.
    43. Zhang, Y. Y., Fu, Q., Song, B. et al. Regulation Strategy of Transition Metal Oxide-Based Electrocatalysts for Enhanced Oxygen Evolution Reaction. Acc. Mater. Res. 3 (10), 1088-1100, 2022.
    44. Zhang, K. X. and Zou, R. Q. Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges. Small 17 (37), 40, 2021.
    45. Suntivich, J., May, K. J., Gasteiger, H. A. et al. A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 334 (6061), 1383-1385, 2011.
    46. Mefford, J. T., Rong, X., Abakumov, A. M. et al. Water Electrolysis on La1−xSrxCoO3−δ Perovskite Electrocatalysts. Nat. Commun. 7 (1), 11053, 2016.
    47. Zhang, B., Wang, L., Cao, Z. et al. High-Valence Metals Improve Oxygen Evolution Reaction Performance by Modulating 3d Metal Oxidation Cycle Energetics. Nat. Catal. 3 (12), 985-992, 2020.
    48. Cheng, F. P., Li, Z. J., Wang, L. et al. In-Situ Identification of the Electrocatalytic Water Oxidation Behavior of a Nickel-Based Metal–Organic Framework Nanoarray. Mater. Horiz. 8 (2), 556-564, 2021.
    49. Hung, S. F., Hsu, Y. Y., Chang, C. J. et al. Unraveling Geometrical Site Confinement in Highly Efficient Iron-Doped Electrocatalysts toward Oxygen Evolution Reaction. Adv. Energy Mater. 8 (7), 1701686, 2018.
    50. Wu, T. Z., Sun, S. N., Song, J. J. et al. Iron-Facilitated Dynamic Active-Site Generation on Spinel CoAl2O4 with Self-Termination of Surface Reconstruction for Water Oxidation. Nat. Catal. 2 (9), 763-772, 2019.
    51. Zhu, K. Y., Liu, H. Y., Li, M. R. et al. Atomic-Scale Topochemical Preparation of Crystalline Fe3+-Doped β-Ni(OH)2 for an Ultrahigh-Rate Oxygen Evolution Reaction. J. Mater. Chem. A 5 (17), 7753-7758, 2017.
    52. Yuan, S. A., Peng, J. Y., Cai, B. et al. Tunable Metal Hydroxide–Organic Frameworks for Catalysing Oxygen Evolution. Nat. Mater. 21 (6), 673-680, 2022.
    53. Gong, M. and Dai, H. J. A Mini Review of NiFe-Based Materials as Highly Active Oxygen Evolution Reaction Electrocatalysts. Nano Res. 8 (1), 23-39, 2015.
    54. Młynarek, G., Paszkiewicz, M., and Radniecka, A. The Effect of Ferric Ions on the Behaviour of a Nickelous Hydroxide Electrode. J. Appl. Electrochem. 14 (2), 145-149, 1984.
    55. Enman, L. J., Burke, M. S., Batchellor, A. S. et al. Effects of Intentionally Incorporated Metal Cations on the Oxygen Evolution Electrocatalytic Activity of Nickel (Oxy)Hydroxide in Alkaline Media. ACS Catal. 6 (4), 2416-2423, 2016.
    56. Kandambeth, S., Kale, V. S., Fan, D. et al. Unveiling Chemically Robust Bimetallic Squarate-Based Metal-Organic Frameworks for Electrocatalytic Oxygen Evolution Reaction. Adv. Energy Mater. 13 (1), 9, 2023.
    57. Stevens, M. B., Trang, C. D. M., Enman, L. J. et al. Reactive Fe-Sites in Ni/Fe (Oxy)Hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity. J. Am. Chem. Soc. 139 (33), 11361-11364, 2017.
    58. Abbott, D. F., Fabbri, E., Borlaf, M. et al. Operando X-Ray Absorption Investigations into the Role of Fe in the Electrochemical Stability and Oxygen Evolution Activity of Ni1−xFexOy Nanoparticles. J. Mater. Chem. A 6 (47), 24534-24549, 2018.
    59. Chen, J. Y. C., Dang, L. N., Liang, H. F. et al. Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mössbauer Spectroscopy. J. Am. Chem. Soc. 137 (48), 15090-15093, 2015.
    60. Chung, D. Y., Lopes, P. P., Martins, F. B. D. P. et al. Dynamic Stability of Active Sites in Hydr(Oxy)Oxides for the Oxygen Evolution Reaction. Nat. Energy 5 (3), 222-230, 2020.
    61. Zhang, H. F., Zhang, X. S., Liu, X. W. et al. Edge Effect on Viscous Drag of the Rotor in Liquid Floating Rotational Micro-Gyroscope. Key Eng. Mater. 562-565, 286-291, 2013.
    62. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H. et al. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science 283 (5405), 1148-1150, 1999.
    63. Horcajada, P., Surblé, S., Serre, C. et al. Synthesis and Catalytic Properties of MIL-100(Fe), an Iron(III) Carboxylate with Large Pores. Chem. Commun. (27), 2820-2822, 2007.
    64. Guesh, K., Caiuby, C. A. D., Mayoral, A. et al. Sustainable Preparation of MIL-100(Fe) and Its Photocatalytic Behavior in the Degradation of Methyl Orange in Water. Cryst. Growth Des. 17 (4), 1806-1813, 2017.
    65. Gutiérrez Serpa, A., Pacheco Fernández, I., Pasán, J. et al. Metal–Organic Frameworks as Key Materials for Solid-Phase Microextraction Devices—A Review. Separations 6 (4), 47, 2019.
    66. Kalmutzki, M. J., Hanikel, N., and Yaghi, O. M. Secondary Building Units as the Turning Point in the Development of the Reticular Chemistry of MOFs. Sci. Adv. 4 (10), eaat9180, 2018.
    67. Farha, O. K., Eryazici, I., Jeong, N. C. et al. Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? J. Am. Chem. Soc. 134 (36), 15016-15021, 2012.
    68. Liu, G. Z., Guo, Y. N., Chen, C. L. et al. Eliminating Lattice Defects in Metal–Organic Framework Molecular-Sieving Membranes. Nat. Mater. 22 (6), 769-776, 2023.
    69. Kim, S. I., Yoon, T. U., Kim, M. B. et al. Metal–Organic Frameworks with High Working Capacities and Cyclic Hydrothermal Stabilities for Fresh Water Production. Chem. Eng. J. 286, 467-475, 2016.
    70. Zhou, J., Han, Z. K., Wang, X. K. et al. Discovery of Quantitative Electronic Structure-OER Activity Relationship in Metal-Organic Framework Electrocatalysts Using an Integrated Theoretical-Experimental Approach. Adv. Funct. Mater. 31 (33), 2102066, 2021.
    71. Yang, Y., Song, Y. H., Mo, S. D. et al. Efficient and Durable FeCoNi-(Oxy)Hydroxide Anode: Stoichiometric Ration Regulated Morphology-, Defect- and Valence-Dependent Water Oxidation Performance. Chem. Eng. J. 417, 127934, 2021.
    72. Morales-Guio, C. G., Liardet, L., and Hu, X. L. Oxidatively Electrodeposited Thin-Film Transition Metal (Oxy)Hydroxides as Oxygen Evolution Catalysts. J. Am. Chem. Soc. 138 (28), 8946-8957, 2016.
    73. Tao, L., Lin, C. Y., Dou, S. et al. Creating Coordinatively Unsaturated Metal Sites in Metal-Organic-Frameworks as Efficient Electrocatalysts for the Oxygen Evolution Reaction: Insights into the Active Centers. Nano Energy 41, 417-425, 2017.
    74. Li, Y. Y., Yuan, M. W., Yang, H. et al. Quantitative Decorating Ni-Sites for Water-Oxidation with the Synergy of Electronegative Sites and High-Density Spin State. Appl. Catal. B-Environ. 323, 122167, 2023.
    75. Wang, Z., Xu, J., Yang, J. H. et al. Ultraviolet/Ozone Treatment for Boosting OER Activity of MOF Nanoneedle Arrays. Chem. Eng. J. 427, 131498, 2022.
    76. Lin, Y. F., Wan, H., Wu, D. et al. Metal–Organic Framework Hexagonal Nanoplates: Bottom-up Synthesis, Topotactic Transformation, and Efficient Oxygen Evolution Reaction. J. Am. Chem. Soc. 142 (16), 7317-7321, 2020.
    77. Yan, D. F., Xia, C. F., Zhang, W. J. et al. Cation Defect Engineering of Transition Metal Electrocatalysts for Oxygen Evolution Reaction. Adv. Energy Mater. 12 (45), 2202317, 2022.
    78. Xue, Z. Q., Liu, K., Liu, Q. L. et al. Missing-Linker Metal-Organic Frameworks for Oxygen Evolution Reaction. Nat. Commun. 10 (1), 5048, 2019.
    79. Ding, J. T., Guo, D. Y., Wang, N. S. et al. Defect Engineered Metal–Organic Framework with Accelerated Structural Transformation for Efficient Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 62 (43), e202311909, 2023.
    80. Wang, B. L., Zhao, K. N., Yu, Z. et al. In-Situ Structural Evolution of the Multi-Site Alloy Electrocatalyst to Manipulate the Intermediate for Enhanced Water Oxidation Reaction. Energy Environ. Sci. 13 (7), 2200-2208, 2020.
    81. Shin, H. J., Yoo, J. M., Sung, Y. E. et al. Dynamic Electrochemical Interfaces for Energy Conversion and Storage. JACS Au 2 (10), 2222-2234, 2022.
    82. Chen, S. M., Ma, L. T., Huang, Z. D. et al. In-Situ/Operando Analysis of Surface Reconstruction of Transition Metal-Based Oxygen Evolution Electrocatalysts. Cell Rep. Phys. Sci. 3 (1), 100729, 2022.
    83. Cheng, C. C., Cheng, P. Y., Huang, C. L. et al. Gold Nanocrystal Decorated Trimetallic Metal Organic Frameworks as High Performance Electrocatalysts for Oxygen Evolution Reaction. Appl. Catal. B-Environ. 286, 119916, 2021.
    84. Han, Q. L., Luo, Y. H., Li, J. D. et al. Efficient NiFe-Based Oxygen Evolution Electrocatalysts and Origin of their Distinct Activity. Appl. Catal. B-Environ. 304, 120937, 2022.
    85. Shi, Z. K., Yu, Z. B., Jiang, R. H. et al. MOF-Derived M-OOH with Rich Oxygen Defects by In-Situ Electro-Oxidation Reconstitution for a Highly Efficient Oxygen Evolution Reaction. J. Mater. Chem. A 9 (18), 11415-11426, 2021.
    86. Wang, B. Q., Han, X., Guo, C. et al. Structure Inheritance Strategy from MOF to Edge-Enriched NiFe-LDH Array for Enhanced Oxygen Evolution Reaction. Appl. Catal. B-Environ. 298, 120580, 2021.
    87. Lei, H., Ma, L., Wan, Q. X. et al. Promoting Surface Reconstruction of NiFe Layered Double Hydroxide for Enhanced Oxygen Evolution. Adv. Energy Mater. 12 (48), 2202522, 2022.
    88. Lee, W. H., Han, M. H., Ko, Y. J. et al. Electrode Reconstruction Strategy for Oxygen Evolution Reaction: Maintaining Fe-CoOOH Phase with Intermediate-Spin State during Electrolysis. Nat. Commun. 13 (1), 605, 2022.
    89. Favaro, M., Yang, J. H., Nappini, S. et al. Understanding the Oxygen Evolution Reaction Mechanism on CoOx Using Operando Ambient-Pressure X-Ray Photoelectron Spectroscopy. J. Am. Chem. Soc. 139 (26), 8960-8970, 2017.
    90. Thangavel, P., Ha, M. R., Kumaraguru, S. et al. Graphene-Nanoplatelets-Supported NiFe-MOF: High-Efficiency and Ultra-Stable Oxygen Electrodes for Sustained Alkaline Anion Exchange Membrane Water Electrolysis. Energy Environ. Sci. 13 (10), 3447-3458, 2020.
    91. Zhu, D. D., Liu, J. L., Wang, L. et al. A 2d Metal-Organic Framework/Ni(OH)2 Heterostructure for an Enhanced Oxygen Evolution Reaction. Nanoscale 11 (8), 3599-3605, 2019.
    92. Li, Q. L., Liu, Y. B., Niu, S. Y. et al. Microwave-Assisted Rapid Synthesis and Activation of Ultrathin Trimetal-Organic Framework Nanosheets for Efficient Electrocatalytic Oxygen Evolution. J. Colloid Interface Sci. 603, 148-156, 2021.
    93. Wu, W. B., Decker, G. E., Weaver, A. E. et al. Facile and Rapid Room-Temperature Electrosynthesis and Controlled Surface Growth of Fe-MIL-101 and Fe-MIL-101-NH2. ACS Cent. Sci. 7 (8), 1427-1433, 2021.
    94. Zhang, Q., Yan, S. G., Yan, X. T. et al. Recent Advances in Metal-Organic Frameworks: Synthesis, Application and Toxicity. Sci. Total Environ. 902, 21, 2023.
    95. Li, F. L., Wang, P. T., Huang, X. Q. et al. Large-Scale, Bottom-up Synthesis of Binary Metal–Organic Framework Nanosheets for Efficient Water Oxidation. Angew. Chem. Int. Ed. 58 (21), 7051-7056, 2019.
    96. Nyyssonen, D. and Larrabee, R. D. Submicrometer Linewidth Metrology in the Optical Microscope. J. Res. Natl. Bur. Stand. 92 (3), 187-204, 1987.
    97. Ali, A., Zhang, N., and Santos, R. M. Mineral Characterization Using Scanning Electron Microscopy (SEM): A Review of the Fundamentals, Advancements, and Research Directions. Appl. Sci.-Basel 13 (23), 33, 2023.
    98. Wardini, J. L., Vahidi, H., Guo, H. M. et al. Probing Multiscale Disorder in Pyrochlore and Related Complex Oxides in the Transmission Electron Microscope: A Review. Front. Chem. 9, 2021.
    99. He, H., Huang, C., Luo, C. W. et al. Dynamic Study of Li Intercalation into Graphite by In-Situ High Energy Synchrotron XRD. Electrochim. Acta 92, 148-152, 2013.
    100. Hynes, A., Scott, D. A., Man, A. et al. Molecular Mapping of Periodontal Tissues Using Infrared Microspectroscopy. BMC Med. Imaging 5 (1), 2, 2005.
    101. Abebe, B., Murthy, H., and Amare, E. Summary on Adsorption and Photocatalysis for Pollutant Remediation: Mini Review. J. Encapsulation Adsorpt. Sci. 8, 225-255, 2018.
    102. Xu, L. F., Zhang, J. C., Ding, J. H. et al. Pore Structure and Fractal Characteristics of Different Shale Lithofacies in the Dalong Formation in the Western Area of the Lower Yangtze Platform. Minerals 10 (1), 72, 2020.
    103. Rinawati, M., Wang, Y. X., Huang, W. H. et al. Unraveling the Efficiency of Heteroatom-Doped Graphene Quantum Dots Incorporated MOF-Derived Bimetallic Layered Double Hydroxide towards Oxygen Evolution Reaction. Carbon 200, 437-447, 2022.
    104. Lv, H. Z., Pan, Q., Song, Y. et al. A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nano-Micro Lett. 12 (1), 118, 2020.
    105. Kawashima, K., Márquez, R. A., Son, Y. J. et al. Accurate Potentials of Hg/HgO Electrodes: Practical Parameters for Reporting Alkaline Water Electrolysis Overpotentials. ACS Catal. 13 (3), 1893-1898, 2023.
    106. Lazanas, A. C. and Prodromidis, M. I. Electrochemical Impedance Spectroscopy─A Tutorial. ACS Meas. Sci. Au 3 (3), 162-193, 2023.
    107. Fan, R. Y., Xie, J. Y., Liu, H. J. et al. Directional Regulating Dynamic Equilibrium to Continuously Update Electrocatalytic Interface for Oxygen Evolution Reaction. Chem. Eng. J. 431, 134040, 2022.
    108. Niu, S. Q., Li, S. W., Du, Y. C. et al. How to Reliably Report the Overpotential of an Electrocatalyst. ACS Energy Lett. 5 (4), 1083-1087, 2020.
    109. Zeledón, J. A. Z., Jackson, A., Stevens, M. B. et al. Methods-A Practical Approach to the Reversible Hydrogen Electrode Scale. J. Electrochem. Soc. 169 (6), 066505, 2022.
    110. Thangavel, P., Ha, M., Kumaraguru, S. et al. Graphene-Nanoplatelets-Supported NiFe-MOF: High-Efficiency and Ultra-Stable Oxygen Electrodes for Sustained Alkaline Anion Exchange Membrane Water Electrolysis. Energy Environ. Sci. 13 (10), 3447-3458, 2020.
    111. Mahalakshmi, G. and Balachandran, V. FT-IR and FT-Raman Spectra, Normal Coordinate Analysis and ab initio Computations of Trimesic Acid. Spectrochim. Acta, Part A 124, 535-547, 2014.
    112. Li, Z. L., Deng, S. K., Yu, H. et al. Fe–Co–Ni Trimetallic Organic Framework Chrysanthemum-Like Nanoflowers: Efficient and Durable Oxygen Evolution Electrocatalysts. J. Mater. Chem. A 10 (8), 4230-4241, 2022.
    113. Wang, L., Wu, Y. Z., Cao, R. et al. Fe/Ni Metal–Organic Frameworks and Their Binder-Free Thin Films for Efficient Oxygen Evolution with Low Overpotential. ACS Appl. Mater. Interfaces 8 (26), 16736-16743, 2016.
    114. Milakin, K. A., Gavrilov, N., Pašti, I. A. et al. Polyaniline-Metal Organic Framework(Fe-BTC) Composite for Electrochemical Applications. Polymer 208, 122945, 2020.
    115. Wang, Y., Cao, W., Wang, L. Y. et al. Electrochemical Determination of 2,4,6-Trinitrophenol Using a Hybrid Film Composed of a Copper-Based Metal Organic Framework and Electroreduced Graphene Oxide. Microchim. Acta 185 (6), 315, 2018.
    116. Lyu, S. L., Guo, C. X., Wang, J. N. et al. Exceptional Catalytic Activity of Oxygen Evolution Reaction via Two-Dimensional Graphene Multilayer Confined Metal-Organic Frameworks. Nat. Commun. 13 (1), 6171, 2022.
    117. Tang, W. J., Yu, Z. B., Chen, H. L. et al. Amorphous Dominated Metal Hydroxide-Organic Framework with Compositional and Structural Heterogeneity for Enhancing Anodic Electro-Oxidation Reactions. J. Colloid Interface Sci. 644, 358-367, 2023.
    118. Peng, L. S., Yang, N., Yang, Y. Q. et al. Atomic Cation-Vacancy Engineering of NiFe-Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 60 (46), 24612-24619, 2021.
    119. Anantharaj, S., Ede, S. R., Karthick, K. et al. Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revisiting Activity Parameters with a Critical Assessment. Energy Environ. Sci. 11 (4), 744-771, 2018.
    120. Li, M., Sun, H. C., Yang, J. M. et al. Mono-Coordinated Metallocene Ligands Endow Metal-Organic Frameworks with Highly Efficient Oxygen Evolution and Urea Electrolysis. Chem. Eng. J. 430, 132733, 2022.
    121. Zhong, L., Ding, J. Y., Wang, X. et al. Structural and Morphological Conversion between Two Co-Based MOFs for Enhanced Water Oxidation. Inorg. Chem. 59 (5), 2701-2710, 2020.
    122. Naguib, M., Kurtoglu, M., Presser, V. et al. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 23 (37), 4248-4253, 2011.
    123. Park, H., Kim, S. Y., Kim, S. J. et al. Bioactive Inorganic Compound MXene and Its Application in Tissue Engineering and Regenerative Medicine. J. Ind. Eng. Chem. 117, 38-53, 2023.
    124. Tan, P. P., Gao, R. W., Zhang, Y. W. et al. Electrostatically Directed Assembly of Two-Dimensional Ultrathin Co2Ni-MOF/Ti3C2Tx Nanosheets for Electrocatalytic Oxygen Evolution. J. Colloid Interface Sci. 630, 363-371, 2023.
    125. Kong, F. H., Zhang, W. W., Sun, L. P. et al. Interface Electronic Coupling in Hierarchical FeLDH(FeCo)/Co(OH)2 Arrays for Efficient Electrocatalytic Oxygen Evolution. ChemSusChem 12 (15), 3592-3601, 2019.

    無法下載圖示 校內:2027-05-09公開
    校外:2027-05-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE