| 研究生: |
陳忠貴 Chen, Chung-kuei |
|---|---|
| 論文名稱: |
應用有限元素法模擬光彈條紋圖像 Simulate Photoelastic Fringe Pattern by Using Finite Element Method |
| 指導教授: |
陳元方
Chen, Terry Yuan-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 等色線 、次主應力 、有限元素法 、等傾線 |
| 外文關鍵詞: | Finite Element Method, isoclinics, secondary principle stress, isochromatic |
| 相關次數: | 點閱:55 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光彈應力分析是一種很普遍且有很多研究的技術。我們可以透過光彈實驗得到具相同主應力方向點的軌跡,與相同主應力差值點之軌跡,此兩組數據為光彈應力分析中之重要參數。
本文以有限元素法,模擬模型於受負載及邊界條件作用下,由所得之受力模型應力分佈情況,轉換成光彈實驗中之光強度,以模擬穿透式及散射式光彈之條紋影像,並利用實驗方式來與模擬所得條紋圖像作比較驗證。主要是以有限元素模擬光彈應力分析中,等傾線、等色線及散射式光彈中沿光通過路徑其次主應力方向改變與次主應力方向不變之條紋影像。
在穿透式光彈條紋的模擬,使用圓盤模型來模擬平面偏光場與圓偏光場皆可得到不錯的結果。在散射式光彈條紋圖像模擬,使用圓盤模型來模擬光彈條紋,設定偏極化方向及觀測角皆為45度,得到的模擬圖像非常趨近於理論解模擬結果,得到不錯的結果。使用L型模型模擬次主應力方向沿光線路徑方向改變的光彈條紋,經實驗所得條紋圖像與模擬所得條紋圖像比對,亦可得到相當吻合的結果。
The photoelasticity stress analysis is a technology with many researches focus on it. We can acquire the locutions of points with the same principle stress direction and the principle stress difference through the photoelasticity experiments These data are the important parameters in photoelasticity stress analysis.
The main purpose of this article is using Finite Element Method to simulate the distributions of stress when model subject loadings and boundary conditions, then turn these into the intensities of lights to simulate the fringe patterns of transmission and scattered-light photoelasticity. And compare these results with the patterns of photoelasticity experiments. We use Finite Element Method to simulate the isoclinic and isochromatic patterns of photoelasicity experiments and the fringes while the secondary principle stress varies along the path of light and the secondary principle direction fixed.
In the simulation of transmission photoelasticity, we use the disk model to simulate Plane Polariscope and Circular Polariscope, then we can get a good result. And in the simulation of scattered-light photoelasticity fringe pattern, we also use the disk model to simulate the fringe pattern. Let the polarization and observation direction to be 45 degrees, then we can get the simulation fringe pattern which is close to the experiment pattern. So the result is good. Using the L shape model to simulate the fringes while the secondary principle stress varies along the path of light, the simulation fringe pattern compare with the experiment pattern, the result is found to be good.
[1] Ramesh K. Digital Photoelasticity: Advanced Techniques and Applications.Springer Verlag, Berlin, Germany, 2000.
[2]. Dally JW, Riley WF. Experimental stress analysis, McGraw-Hill, New York, 1991.
[3]. Thercaris. P. S. and Gdoutos,E. E., Matrix Theory of Photoelasticity,Springer Series in Optical Sciences, Berlin,1979.
[4]. Sanford RJ, Beaubien LA. Stress analysis of a complex part: photoelasticity vs. finite elements. Experimental
Mechanics 1977; p441–448.
[5]. Guagliano M, Vergani L. Experimental and numerical analysis of sub-surface cracks in railway wheels.
Engineering Fracture Mechanics 2005; p255–269.
[6]. Meek JL, Beer G. Contour plotting of data using isoparametric element representation. International Journal
for Numerical Methods in Engineering 1976; p954–957.
[7]. Akin JE, Gray WH. An improved method for contouring on isoparametric surfaces. International Journal for
Numerical Methods in Engineering 1979; p451–472.
[8]. Stelzer JF, Welzel R. Plotting of contours in a natural way. International Journal for Numerical Methods in
Engineering 1987; p 1757–1769.
[9]. Ramesh K, Yadav AK, Pankhawalla VA. Plotting of fringe contours from finite element results. Communications
in Numerical Methods in Engineering 1995; p 839–847.
[10]. Ramesh K, Pathak PM. Validation of finite element modelling through photoelastic fringe contours.
Communications in Numerical Methods in Engineering 1999, p 229–238.
[11]. P. R. D. Karthick Babu and K. Ramesh. Development of photoelastic fringe plotting scheme from 3D FE results. Communications in Numerical Methods in Engineering 2006, p 809-821
[12]. R.Weller, A new Method for Photoelasticity in Three Dimensions.J.of Applied Physics 1939, p.266
[13]. D. C. Drucker and R. D. Mindlin, Stress Analysis by Three-Dimensional Photoelasticity Methods. J. of Applied Physics 1940, p 724-732
[14]. H. T. Jessop, The Scattered-Light Method of Exploration of Stress in Two- and Three-Dimensional Methods. Brit. J. of Applied Physics 1951,p.249-260
[15]. W. Shelson and L. W. Smith,APhotoelastic Method Employing Scattered-Light for the Solution of Plane Stress Problem. Brit. J. of Applied Physics.1956, p 436-439
[16]. Y. F. Cheng.New Techniques for Scattered-Light Photoelasticity. Experimental Mechanics.1963, p 275-278
[17]. Y. F. Cheng A Dual-observation Method for Determining Photoelastic Parameters in Scattered Light. Experimental Mechanics.1967, p 140-144
[18]. Y. F. Cheng An Automatic System for Scattered-light Photoelasticity. Experimental Mechanics.1969, p 407-412
[19]. L. S. Srinath, analysis of Scattered-Light Method in Photoelasticity. Experimental Mechanics.1969, p 463-468
[20]. R. W. Aderholdt and W. F. Swinson, Esablishing the Boundary Retardation with respect to the Observed Fringes in Scattered-Light Photoelasticity. Experimental Mechanics.1971, p 521-523
[21]. A. Katoh, J. Rao, M. Takashi and T. Kunio, Mode III Stress Intensity Factor Measurement by Scattered-Light Photoelasticity Using Digital Image Processing. Proceedings of Asian Pacific Conference on Fracture and Strength,Japan, 1993, p401-406.
[22]. T. Y. Chen and H. L. Lee,” Whole-field digital measurement of the secondary principal stress parameters in scattered light photoelasticity”, 2005.
[23]. 佟景傳 “實驗應力分析”,湖南科學技術出板社,中國大陸,pp248-249, pp.291-294,1983。
[24]. 繆紹剛 “數位影像處理”,台灣培生教育出版股份有限公司,中華民國92年。
[25]. 陳新郁、林政仁 “有限元素分析-理論與應用ANSYS”, 台灣培生教育出版股份有限公司,中華民國95年。