| 研究生: |
鮑星瑜 Bao, Sing-Yu |
|---|---|
| 論文名稱: |
臺灣乾熱複合事件特徵分析及對環境資源的潛在影響 Analyze the Characteristics of Compound Drought and Heatwave Events in Taiwan and Their Potential Impacts on Environmental Resources |
| 指導教授: |
徐國錦
Hsu, Kuo-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 乾旱熱浪複合事件 、BEAST 、Copula 、氣候風險管理 |
| 外文關鍵詞: | Compound drought and heatwave events, BEAST, Copula, climate risk management |
| ORCID: | 0009-0002-1116-2024 |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對1995–2024年間臺灣乾旱與熱浪的聯合發生現象進行系統性分析,旨在探討乾熱複合事件在氣候變遷與ENSO調控下的時空變異特徵及其對資源系統的影響。研究結合BEAST突變點偵測、旋轉Clayton Copula非線性依存模型及遲滯關係分析,並透過能源–糧食–水–健康(EFW-H)概念整合環境資源資料,量化事件對各資源的即時與延遲性影響。結果顯示,臺灣乾熱事件既受到全球增暖驅動的長期累積效應影響,也受到ENSO短期波動的調控;北部基隆的乾熱複合事件依存性強,對稻米產值、家庭用電、水庫蓄水量及熱相關疾病影響廣泛,呈現跨年度延遲累積效應;南部恆春則以即時熱衝擊為主,主要影響漁業與健康,乾熱複合事件發生門檻低且頻率較高。Copula重現期分析與ENSO相位比較進一步顯示,基隆在聖嬰期易發生高強度事件且重現期較長,恆春複合事件發生頻率高,且於反聖嬰期較易發生,呈現區域差異之極端事件風險特徵。綜合而言,本研究建立了一套可同時評估乾熱事件時序演變、非線性結構與跨系統影響的分析框架,補足了臺灣乾熱事件研究之不足,並為未來水資源調度、能源規劃、農漁業調適及公共衛生防護提供科學依據,對提升臺灣面對極端乾熱事件的韌性與永續發展具有重要實務價值。
This study investigates the spatio-temporal characteristics and systemic analysis of compound drought and heatwave events (CDHEs) in Taiwan by integrating the Energy–Food–Water–Health (EFW-H) concept with the Bayesian Ensemble Algorithm for Change-Point Detection and Time Series Decomposition (BEAST), lag correlation analysis, and the rotating Clayton Copula model. Using daily meteorological data and the Oceanic Niño Index (ONI) from 1995 to 2024, a comprehensive CDHEs database was constructed to examine the potential impacts on electricity consumption, water storage, agricultural production, aquaculture yield, and heat-related health outcomes.
The results suggest that greenhouse gas forcing drives the long-term intensification of CDHEs, while ENSO introduces short-term and regional variability. Northern Taiwan exhibited that CDHEs is more correlated with energy demand, agricultural production, and heat-related illness, whereas southern Taiwan showed greater vulnerability in agricultural and aquaculture as well as health systems. This research provides a scientific base for climate adaptation and resource management by quantifying both immediate and lagged responses of resource and environment systems to extreme climate events.
Alam, A. T. M., Rahman, M. S., & Saadat, A. H. M. (2013). Monitoring meteorological and agricultural drought dynamics in Barind region Bangladesh using standard precipitation index and Markov chain model. International Journal of Geomatics and Geosciences, 3, 511–524.
Awasthi, A., Vishwakarma, K., & Pattnayak, K. C. (2022). Retrospection of heatwave and heat index. Theoretical and Applied Climatology, 147(1–2), 589–604. https://doi.org/10.1007/s00704-021-03854-z
Baddoo, T. D., Guan, Y., Zhang, D., & Andam-Akorful, S. A. (2015). Rainfall Variability in the Huangfuchuang Watershed and Its Relationship with ENSO. Water, 7(7), 3243-3262. https://doi.org/10.3390/w7073243
Brás, T. A., Seixas, J., Carvalhais, N., & Jägermeyr, J. (2021). Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environmental Research Letters, 16(6), 065012. https://doi.org/10.1088/1748-9326/abf004
Centers for Disease Control, Ministry of Health and Welfare. (2025). Real-time epidemic surveillance and warning system: Heat-related emergency visits. https://data.gov.tw/dataset/157637
Central Weather Administration. (2025). CODiS Climate Observation Data Inquiry Service. Central Weather Administration. https://codis.cwa.gov.tw/
Chand, S., & Dhaliwal, L. K. (2024). Relationship of ENSO and standardized precipitation index (SPI) to characterize drought at different locations of Punjab, India. International Journal of Environment and Climate Change, 14(3), 95–105. https://doi.org/10.9734/ijecc/2024/v14i34022
Chen, J. M., & Lu, M. M. (2000). Interannual variation of the Asian-Pacific atmospheric system in association with the northern summer SST changes. Terrestrial, Atmospheric and Oceanic Sciences, 11, 833–860.
Chen, J. M., Hsieh, C. M., & Liu, J. S. (2012). Possible influences of ENSO on winter shipping in the North Pacific. Terrestrial, Atmospheric and Oceanic Sciences, 23(4), 397–411. https://doi.org/10.3319/TAO.2012.03.02.01(A)
Cowan, T., Purich, A., Perkins, S., Pezza, A., Boschat, G., & Sadler, K. (2014). More frequent, longer, and hotter heat waves for Australia in the Twenty-First Century. Journal of Climate, 27(15), 5851-5871. https://doi.org/10.1175/JCLI-D-14-00092.1
Dai, A. (2011). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65. https://doi.org/10.1002/wcc.81
Dar, J. A., & Apurv, T. (2024). Spatiotemporal characteristics and physical drivers of heatwaves in India. Geophysical Research Letters, 51, e2024GL109785. https://doi.org/10.1029/2024GL109785
Deng, X., Hwang, C., Coleman, R., & Featherstone, W. E. (2008). Seasonal and interannual variations of the Leeuwin Current off Western Australia from TOPEX/Poseidon satellite altimetry. Terrestrial, Atmospheric and Oceanic Sciences, 19(1–2), 135–149. https://doi.org/10.3319/TAO.2008.19.1-2.135(SA)
Dosio, A., Mentaschi, L., Fischer, E. M., & Wyser, K. (2018). Extreme heat waves under 1.5 °C and 2 °C global warming. Environmental Research Letters, 13(5), 054006. https://doi.org/10.1088/1748-9326/aab827
Fan, J., Wei, S., Liu, D., Qin, T., Xu, F., Wu, C., Liu, G., & Cheng, Y. (2023). Impact of ENSO events on meteorological drought in the Weihe River basin, China. Frontiers in Earth Science, 11, 1093632. https://doi.org/10.3389/feart.2023.1093632
Fang, S.-L., Tsai, B.-Y., Wu, C.-Y., Chang, S.-C., Chang, Y.-L., & Kuo, B.-J. (2025). The Effect of Climate Change on Important Climate Variables in Taiwan and Its Potential Impact on Crop Production. Agriculture, 15(7), 766. https://doi.org/10.3390/agriculture15070766
Glass, G. V., & Hopkins, K. D. (1996). Statistical methods in education and psychology (3rd ed.). Allyn & Bacon
Guo, Y., Huang, S., Huang, Q., Wang, H., Fang, W., Yang, Y., & Wang, L. (2019). Assessing socioeconomic drought based on an improved Multivariate Standardized Reliability and Resilience Index. Journal of Hydrology, 568, 904–918.https://doi.org/10.1016/j.jhydrol.2018.11.055
Hao, Z., Hao, F., Xia, Y., Feng, S., Sun, C., Zhang, X., Fu, Y., Hao, Y., Zhang, Y., & Meng, Y. (2022). Compound droughts and hot extremes: Characteristics, drivers, changes, and impacts. Earth-Science Reviews, 235, 104241. https://doi.org/10.1016/j.earscirev.2022.104241
Ho, C. H., Lur, H. S., Yao, M. H., & et al. (2018). The impact on food security and future adaptation under climate variation: A case study of Taiwan’s agriculture and fisheries. Mitigation and Adaptation Strategies for Global Change, 23, 311–347. https://doi.org/10.1007/s11027-017-9742-3
Hsu, K.-C., Wang, C.-H., Chen, K.-C., Chen, C.-T., & Ma, K.-W. (2007). Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeology Journal, 15(5), 903–913. https://doi.org/10.1007/s10040-006-0137-x
Huang, S., Huang, Q., Chang, J., & Leng, G. (2016). Linkages between hydrological drought, climate indices and human activities: A case study in the Columbia River Basin. International Journal of Climatology, 37(5), 2446–2461. https://doi.org/10.1002/joc.4344
Hung, C. W., & Shih, M. F. (2019). Analysis of severe droughts in taiwan and its related atmospheric and oceanic environments. Atmosphere, 10(3), Article 159. https://doi.org/10.3390/atmos10030159
Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009157896
Ionita, M., Caldarescu, D. E., & Nagavciuc, V. (2021).Compound hot and dry events in Europe: Variability and large-scale drivers. Frontiers in Climate, 3. https://doi.org/10.3389/fclim.2021.688991
Kchouk, S., Melsen, L. A., Walker, D. W., & van Oel, P. R. (2022). A geography of drought indices: Mismatch between indicators of drought and its impacts on water and food securities. Natural Hazards and Earth System Sciences, 22(1), 323–344. https://doi.org/10.5194/nhess-22-323-2022
Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1–2), 81–93. https://doi.org/10.2307/2332226
Kenyon, J., & Hegerl, G. C. (2008). Influence of modes of climate variability on global temperature extremes. Journal of Climate, 21(15), 3872–3889. https://doi.org/10.1175/2008JCLI2125.1
Lan, X., Tans, P., & Thoning, K. W. (2025). Trends in globally-averaged CO₂ determined from NOAA Global Monitoring Laboratory measurements (Version 2025-09). NOAA Global Monitoring Laboratory. https://doi.org/10.15138/9N0H-ZH07
Laurin, G. V., Cotrina-Sanchez, A., Belelli-Marchesini, L., Tomelleri, E., Battipaglia, G., Cocozza, C., Niccoli, F., Kabala, J. P., Gianelle, D., Vescovo, L., Da Ros, L., & Valentini, R. (2024). Comparing ground below-canopy and satellite spectral data for an improved and integrated forest phenology monitoring system. Ecological Indicators, 158, 111328. https://doi.org/10.1016/j.ecolind.2023.111328
Legates, D., Yang, D., Quiring, S., Freeman, K., & Bogart, T. (2005). Bias adjustments to Arctic precipitation: A comparison of daily versus monthly bias adjustments. 85th AMS Annual Meeting, American Meteorological Society – Combined Preprints.
Li, J., Wu, J., Yang, Y., & Tang, R. (2025). Economic consequences of compound drought-heatwave induced power deficits: Evidence from Sichuan's 2022 power crisis. Sustainable Cities and Society, 130, 106639. https://doi.org/10.1016/j.scs.2025.106639
Li, M.-Y., Hung, H.-C., Hsu, H.-H., & Wang, P.-S. (2023). Causes of the record-breaking drought in Taiwan in 2020–2021. Meteorological Bulletin, 51(1), 30–57. https://doi.org/10.53106/025400022023015101002
Li, T., & Wang, B. (2005). A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terrestrial, Atmospheric and Oceanic Sciences, 16, 285–314.
Liu, Q. (2016). Interlinking climate change with water-energy-food nexus and related ecosystem processes in California case studies. Ecological Processes, 5, Article 14. https://doi.org/10.1186/s13717-016-0058-0
Liu, X., Zhu, X., Pan, Y., Li, S., Liu, Y., & Ma, Z. (2018). Performance of different drought indices for agriculture drought in the North China Plain. Journal of Arid Land, 8(2), 274–286. https://doi.org/10.1007/s40333-018-0005-2
Lin, C.-Y., Chien, Y.-Y., Su, C.-J., Kuo, C.-H., & Chen, Y.-C. (2017). Climate variability of heat wave and projection of warming scenario in Taiwan. Climatic Change, 145, 305–320. https://doi.org/10.1007/s10584-017-2091-0
Lv, A., Fan, L., & Zhang, W. (2022). Impact of ENSO events on droughts in China. Atmosphere, 13(11), 1764. https://doi.org/10.3390/atmos13111764
Lyon, B., & Barnston, A. G. (2005). ENSO and the Spatial Extent of Interannual Precipitation Extremes in Tropical Land Areas. Journal of Climate, 18(23), 5095-5109. https://doi.org/10.1175/JCLI3598.1
Marengo, J. A., Costa, M. C., Cunha, A. P., Espinoza, J.-C., Jimenez, J. C., Libonati, R., Miranda, V., Trigo, I. F., Sierra, J. P., Geirinhas, J. L., Ramos, A. M., Skansi, M., Molina-Carpio, J., & Salinas, R. (2025).Climatological patterns of heatwaves during winter and spring 2023 and trends for the period 1979–2023 in central South America. Frontiers in Climate, 7. https://doi.org/10.3389/fclim.2025.1529082
Mazdiyasni, O., & AghaKouchak, A. (2015). Substantial increase in concurrent droughts and heatwaves in the United States. Proceedings of the National Academy of Sciences of the United States of America, 112(37), 11484–11489. https://doi.org/10.1073/pnas.1422945112
McBride, J. L. , & Nicholls, N. . (1983). Seasonal Relationships between Australian Rainfall and the Southern Oscillation. Monthly Weather Review, 111(10), 1998-2004. https://doi.org/10.1175/1520-0493(1983)111<1998:SRBARA>2.0.CO;2
McCreary, J., Zebiak, S.E. & Glantz, M.H. (2006). ENSO as an Integrating Concept in Earth Science. Science, 314, 1740-1745. https://doi.org/10.1126/science.1132588
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology (Vol. 17, pp. 179–183). American Meteorological Society.
Meehl, G. A., & Washington, W. M. (1996). El Niño-like climate change in a model with increased atmospheric CO₂ concentrations. Nature, 382(6589), 56–60. https://doi.org/10.1038/382056a0
Menzo, Z. M., Karamperidou, C., Kong, Q., & Huber, M. (2025). El Niño enhances exposure to humid heat extremes with regionally varying impacts during Eastern versus Central Pacific events. Geophysical Research Letters, 52, e2024GL112387. https://doi.org/10.1029/2024GL112387
Miara, A., Macknick, J. E., & Fekete, B. (2017). Climate and water resource change impacts and adaptation potential for US power supply. Nature Climate Change, 7(11), 793–798. https://doi.org/10.1038/nclimate3417
Ministry of Agriculture. (2025). Agricultural production statistics. https://agrstat.moa.gov.tw/sdweb/public/inquiry/InquireAdvance.aspx
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391, 202–216.https://doi.org/10.1016/j.jhydrol.2010.07.012
Nairn, J. R., & Fawcett, R. J. B. (2015). The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. International Journal of Environmental Research and Public Health, 12(1), 227-253. https://doi.org/10.3390/ijerph120100227
Nelsen, R.B. (2006). An Introduction to Copulas. 2nd Edition, Springer Science Business Media, New York.
Nicholson, S. E., & Kim, J. (1997). The relationship of the El Niño–Southern Oscillation to African rainfall. International Journal of Climatology, 17(2), 117–135.https://doi.org/10.1002/(SICI)1097-0088(199702)17:2<117::AID-JOC84>3.0.CO;2-O
NOAA National Centers for Environmental Information. (2025, December). Climate at a glance: Global time series. Retrieved December 12, 2025, from https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-series
NOAA Climate Prediction Center. (2025). Cold & warm episodes by season. Retrieved July 11, 2025, from https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
Nordling, K., Fahrenbach, N. L. S., & Samset, B. H. (2025). Climate variability can outweigh the influence of climate mean changes for extreme precipitation under global warming. Atmospheric Chemistry and Physics, 25, 1659–1684. https://doi.org/10.5194/acp-25-1659-2025
Pan, R., Nieto-Barajas, L. E., & Craiu, R. (2025). Multivariate temporal dependence via mixtures of rotated copulas. arXiv. https://doi.org/10.48550/arXiv.2403.12789
Panda, D. K., AghaKouchak, A., & Ambast, S. K. (2017). Increasing heat waves and warm spells in India, observed from a multiaspect framework. Journal of Geophysical Research: Atmospheres, 122(7), 3837–3858. https://doi.org/10.1002/2016JD026292
Pearson, K. (1895). Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London, 58, 240–242. https://doi.org/10.1098/rspl.1895.0041
Perkins, S. E., & Alexander, L. V. (2013). On the measurement of heat waves. Journal of Climate, 26(13), 4500–4517. https://doi.org/10.1175/JCLI-D-12-00383.1
Perkins-Kirkpatrick, S. E. (2015). A review on the scientific understanding of heatwaves: Their measurement, driving mechanisms, and changes at the global scale. Atmospheric Research, 164–165, 242–267. https://doi.org/10.1016/j.atmosres.2015.05.014
Perkins-Kirkpatrick, S. E., & Gibson, P. B. (2017). Changes in regional heatwave characteristics as a function of increasing global temperature. Scientific Reports, 7(1), 12256. DOI: 10.1038/s41598-017-12520-2
Philander, S. G. H. (1983). El Niño Southern Oscillation phenomena. Nature, 302(5906), 295-301. https://doi.org/10.1038/302295a0
Purwanto, A., Sušnik, J., Suryadi, F. X., & de Fraiture, C. (2021). Water-Energy-Food Nexus: Critical Review, Practical Applications, and Prospects for Future Research. Sustainability, 13(4), 1919. https://doi.org/10.3390/su13041919
Redmond, K. T., & Koch, R. W. (1991). Surface climate and streamflow variability in the western United States and their relationship to large-scale circulation indices. Water Resources Research, 27(9), 2381–2399. https://doi.org/10.1029/91WR00690
Ribeiro, A. F. S., Russo, A., Gouveia, C. M., Páscoa, P., & Zscheischler, J. (2020). Risk of crop failure due to compound dry and hot extremes estimated with nested copulas. Biogeosciences, 17, 4815–4830. https://doi.org/10.5194/bg-17-4815-2020
Robine, J. M., Cheung, S. L., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J. P., & Herrmann, F. R. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes rendus biologies, 331(2), 171–178. https://doi.org/10.1016/j.crvi.2007.12.001
Robinson, P. J. (2001). On the Definition of a Heat Wave. Journal of Applied Meteorology, 40(4), 762-775. https://doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2
Sakizadeh, M., Milewski, A., & Sattari, M. T. (2023). Analysis of Long-Term Trend of Stream Flow and Interaction Effect of Land Use and Land Cover on Water Yield by SWAT Model and Statistical Learning in Part of Urmia Lake Basin, Northwest of Iran. Water, 15(4), 690. https://doi.org/10.3390/w15040690
Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). Extremes in nature: An approach using copulas. Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/1-4020-4415-1
Šebenik, U., Brilly, M., & Šraj, M. (2017). Drought analysis using the standardized precipitation index (SPI). Acta Geographica Slovenica, 57(1). https://doi.org/10.3986/AGS.729
Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B., & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3–4), 125–161. https://doi.org/10.1016/j.earscirev.2010.02.004
Sheffield, J., & Wood, E. F. (2008). Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle. Journal of Climate, 21(3), 432-458. https://doi.org/10.1175/2007JCLI1822.1
Shiu, C., Liu, S. C., & Chen, J. (2009). Diurnally asymmetric trends of temperature, humidity, and precipitation in Taiwan. Journal of Climate, 22(21), 5635–5649. https://doi.org/10.1175/2009JCLI2514.1
Shovon, M. A. C., Mostafiz, R. B., Al Assi, A., & et al. (2025). Hydroclimatic extremes and aquaculture: A review of impact and response strategies. Aquaculture International, 33, 439. https://doi.org/10.1007/s10499-025-02108-3
Shu, J., Qu, J. J., Motha, R., Xu, J. C., & Dong, D. F. (2018). Impacts of climate change on hydropower development and sustainability: A review. IOP Conference Series: Earth and Environmental Science, 163(1), 012126. https://doi.org/10.1088/1755-1315/163/1/012126
Sklar, A. (1959). Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229-231.
Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1), 72–101. https://doi.org/10.2307/1412159
Stagge, J.H., Tallaksen, L.M., Gudmundsson, L., Van Loon, A.F. and Stahl, K. (2015). Candidate Distributions for Climatological Drought Indices (SPI and SPEI). Int. J. Climatol., 35: 4027-4040. https://doi.org/10.1002/joc.4267
Sun, Y., Hu, T., & Zhang, X. (2018). Substantial increase in heat wave risks in China in a future warmer world. Earth's Future, 6, 1528–1538. https://doi.org/10.1029/2018EF000963
Svoboda, M., Hayes, M., & Wood, D. A. (2012). Standardized precipitation index user guide (WMO-No. 1090). World Meteorological Organization. https://library.wmo.int/idurl/4/39629
Taiwan Climate Change Projection and Information Platform Project. (2023). Climate extreme indices [Web page]. Taiwan Climate Change Projection and Information Platform (TCCIP). https://tccip.ncdr.nat.gov.tw/ds_05_03_indices.aspx
Taiwan Power Company. (2025). Household electricity consumption data. https://www.taipower.com.tw/2289/2406/2437/49978/49988/normalPost
Tavakol, A., Rahmani, V., & Harrington, J. Jr. (2020). Probability of compound climate extremes in a changing climate: A copula-based study of hot, dry, and windy events in the central United States. Environmental Research Letters, 15(10), 104058. https://doi.org/10.1088/1748-9326/abb1ef
Thom, H. (1966). Some methods of climatological analysis. WMO Technical Note Number 81, Secretariat of the World Meteorological Organization, Geneva.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94. https://doi.org/10.2307/210739
Torrence, C., & Compo, G. P. (1998). A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1), 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
Tran, A. P., Tran, B. C., Campbell, S. B., & et al. (2024). Spatio-temporal characterization of drought variability in data-scarce regions using global precipitation data: A case study in Cauto river basin, Cuba. Scientific Reports, 14, 11659. https://doi.org/10.1038/s41598-024-61709-9
Trenberth, K. E. (1997). The Definition of El Niño. Bulletin of the American Meteorological Society, 78(12), 2771-2778. https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2
Trenberth, K. E., & Stepaniak, D. P. (2001). Indices of El Niño Evolution. Journal of Climate, 14(8), 1697-1701. https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2
Tsai, C., Wang, Y., Tseng, W., & Chiang, L. (2025). Pacific Meridional Mode Implicated as a Prime Driver of Decadal Summer Temperature Variation over Taiwan. Journal of Climate, 38(8), 1881-1894. https://doi.org/10.1175/JCLI-D-23-0734.1
United Nations Office for the Coordination of Humanitarian Affairs. (2022, May 30). Technical report: Taiwan drought – Interconnected disaster risks 2021/2022. ReliefWeb. https://reliefweb.int/report/china-taiwan-province/technical-report-taiwan-drought-interconnected-disaster-risks-20212022
Van Lanen, H. A. J. (2006). Drought propagation through the hydrological cycle. In Proceedings of the Fifth FRIEND World Conference (IAHS Publication No. 308, pp. 122–127).International Association of Hydrological Sciences.
Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359-392. https://doi.org/10.1002/wat2.1085
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
Wang, C., Li, Z., Chen, Y., Ouyang, L., Li, Y., Sun, F., Liu, Y., & Zhu, J. (2023). Drought–heatwave compound events are stronger in drylands. Weather and Climate Extremes, 42, 100632. https://doi.org/10.1016/j.wace.2023.100632
Wang, C., Li, Z., Chen, Y., Ouyang, L., Zhao, H., Zhu, J., Wang, J., & Zhao, Y. (2024). Characteristic changes in compound drought and heatwave events under climate change. Atmospheric Research, 305, 107440. https://doi.org/10.1016/j.atmosres.2024.107440
Wang, Y., Zhang, X., Zhao, K., & Singh, D. (2024). Streamflow in the United States: Characteristics, trends, regime shifts, and extremes. Scientific Data, 11, 788. https://doi.org/10.1038/s41597-024-03618-0
Water Resources Agency, Ministry of Economic Affairs. (2021). Basic plan for water resources management in every region of Taiwan. Water Resources Agency, Ministry of Economic Affairs. Retrieved September 1, 2025, from https://www.wra.gov.tw/en/cp.aspx?n=39478
Water Resources Agency, Ministry of Economic Affairs. (2023). Water resources utilization. Retrieved September 1, 2025, from https://www.wra.gov.tw/en/cp.aspx?n=5154&dn=5155
Water Resources Agency, Ministry of Economic Affairs. (2025). Taiwan major reservoir storage report. https://fhy.wra.gov.tw/ReservoirPage_2011/StorageCapacity.aspx
WeatherRisk Explore Inc. (2021). Causes of the drought in the first half of 2021 [in Chinese]. WeatherRisk. https://www.weatherrisk.com/post/2021年上半年乾旱的原因
Wilhite, D. A., & Glantz, M. H. (1985). Understanding the drought phenomenon: The role of definitions. Water International, 10(3), 111–120. https://doi.org/10.1080/02508068508686328
World Meteorological Organization. (2009). Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation (WCDMP-No. 72, WMO/TD-No. 1500). World Meteorological Organization. https://library.wmo.int/idurl/4/48826
World Meteorological Organization. (2023). Guidelines on the definition and characterization of extreme weather and climate events (WMO-No. 1310). World Meteorological Organization. https://library.wmo.int/idurl/4/58396
Wu, H., Hayes, M., Weiss, A., & Hu, Q. (2001). An evaluation of the Standardized Precipitation Index, the China-Z Index and the statistical Z-Score. International Journal of Climatology, 21, 745–758. https://doi.org/10.1002/joc.658
Wu, T.-T., Hsu, Y.-C., & Lee, C.-P. (2015). The effects of El Niño–Southern Oscillation on temperature and precipitation in Taiwan. Journal of Ocean Engineering, 15(1), 57–65. https://doi.org/10.6266/JCOE.2015.1501.04
Wu, X., Hao, Z., Hao, F., Zhang, X., Singh, V. P., & Sun, C. (2021). Influence of large-scale circulation patterns on compound dry and hot events in China. Journal of Geophysical Research: Atmospheres, 126, e2020JD033918. https://doi.org/10.1029/2020JD033918
Wu, Y.-c., Chu, J.-L., & Yu, Y.-C. (2020). Climatology and the Interannual Variability of the High-Temperature Extremes in Taiwan. Journal of Geophysical Research: Atmospheres, 125, e2019JD030992. https://doi.org/10.1029/2019JD030992
Xu, Z., FitzGerald, G., Guo, Y., Jalaludin, B., & Tong, S. (2016). Impact of heatwave on mortality under different heatwave definitions: A systematic review and meta-analysis. Environment International, 89–90, 193–203. https://doi.org/10.1016/j.envint.2016.02.007
Yang, C., Zhang, H., Ta, Z., Huang, G., & Liu, Y. (2024). Assessment of vegetation response to compound dry-hot events in Central Asia based on the Vine-Copula conditional probability model. Ecological Indicators, 169, 112910. https://doi.org/10.1016/j.ecolind.2024.112910
Yeh, H.-F., & Hsu, H.-L. (2019). Using the Markov Chain to analyze precipitation and groundwater drought characteristics and linkage with atmospheric circulation. Sustainability, 11(6), 1817. https://doi.org/10.3390/su11061817
Yu, R., & Zhai, P. (2020). Changes in compound drought and hot extreme events in summer over populated eastern China. Weather and Climate Extremes, 30, 100295. https://doi.org/10.1016/j.wace.2020.100295
Zhang, Q., Li, J., Singh, V. P., & et al. (2012). SPI-based evaluation of drought events in Xinjiang, China. Natural Hazards, 64, 481–492. https://doi.org/10.1007/s11069-012-0251-0
Zhang, Y., Li, W., Chen, Q., Pu, X., & Xiang, L. (2020). Multi-sensor remote sensing for drought monitoring: A review. Remote Sensing, 12(18), 3014. https://doi.org/10.1016/j.rse.2021.112313
Zhao, K., Wulder, M. A., Hu, T., Bright, R., Wu, Q., Qin, H., et al. (2019). Detecting change‐point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sensing of Environment, 232, 111181. https://doi.org/10.1016/j.rse.2019.04.034
Zhao, X., Yu, Y., Cheng, J., Ding, K., Luo, Y., Zheng, K., et al. (2024). A novel framework for heterogeneity decomposition and mechanism inference in spatiotemporal evolution of groundwater storage: Case study in the North China Plain. Water Resources Research, 60, e2023WR036102. https://doi.org/10.1029/2023WR036102
Zscheischler, J., Westra, S., Van Den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., Aghakouchak, A., Bresch, D. N., Leonard, M., Wahl, T., & Zhang, X. (2018). Future climate risk from compound events. Nature Climate Change, 8(6), 469-477. https://doi.org/10.1038/s41558-018-0156-3