簡易檢索 / 詳目顯示

研究生: 許順彥
Hsu, Shun-Yan
論文名稱: 潛沒水下地形引起的剪力不穩定波流況數值模擬
A Numerical Investigation on Shear Instabilities Caused by Submerged Topography
指導教授: 陳佳琳
Chen, Jia-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 剪力不穩定性分層剪力流背向波開爾文-亥姆霍茲波動OpenFOAM
外文關鍵詞: Shear instability, Stratified shear flow, Lee wave, Kelvin-Helmholtz billows, OpenFOAM
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對臺灣綠島北側海域進行三維分層流與地形交互作用之水動力研究,透過開放原始碼數值模式OpenFOAM建置簡化真實海域地形(二元高斯分佈)模擬環境,並蒐集該區域相關背景資料。採用高解析度的大渦模擬(Large Eddy Simulation, LES)紊流模式且配合非靜水壓假設(Non-hydrostatic assumption)之方式進行模擬評估。在模擬分析流程一開始利用大型分層水槽渦旋實驗[Stiperski et al., 2017]的實驗結果作為模式模擬校正條件,從流態與波形尺度比較評估模式之正確性,再使用現地觀測之都卜勒流速剖面儀(Acoustic Doppler Current Profiler, ADCP)和鹽溫深儀(Conductivity Temperature Depth, CTD)所量測到的資料作為初始條件,與聲納回波儀(Echo Sounder, EK)所測得之不穩定波波形做比較。研究模擬結果可知,模式在均勻流速邊界下改變流速大小,可以重現出實驗論文之流場狀態,與相似之長度尺度。而在現地尺度縮尺模擬,分層剪力流(Stratified shear flow)與地形作用下,流場中之流體不穩定性(Shear instability)會逐漸發展,連帶造成流體垂直向的非線性過程與高頻小型渦流成分產生,並主導水動力運動行為。模擬之紊流耗散率在時間上變化的週期、振幅,與現地觀測的EK回波訊號之結果相似,其空間分布亦與2019年的EK回波訊號之二維觀測結果類似。而控制海岸水動力環境不穩定波之關鍵無因次參數,除了定義不穩定性發生與否的梯度理查爾森數Ri,亦與分層流中山尖之地形尖銳度Sc有關,Sc會影響不穩定波的水平尺度與樣貌,即與不穩定波週期保持反比關係。

    This research focuses on the 3-D hydrodynamic study of the interaction between the stratified flow and submerged topography on the northern side of Green Island. The numerical model OpenFOAM is used to carry out a simplified simulation for the real seamount and collect relevant data in this area. LES model with non-hydrostatic assumption are used for this research. First, the experimental results of the large stratified water flume [Stiperski et al., 2017] were used for the model calibraion, and then the in-situ data measured by ADCPs and CTD are used as the initial conditions to simulate the flow pattern and the instability waves and compare with the measurement from echo sounder. The simulation results show that the model can reproduce the flow field and the similar length scale of instability waves observed in the field. Under the interaction between the stratified flow and the seamount, the fluid instability in the flow field gradually develops, and dominates the hydrodynamic motion. The wavelength and amplitude of the simulated turbulent dissipation rate are similar to the results of the echo sounder signals in 2016 observations, and the spatial distribution of the salinity field is also similar to observations in 2019. The key dimensionless parameters that control instability waves in coastal hydrodynamic environment, in addition to Ri, which affects the occurrence of instability waves, are related to the nondimensional parameters Sc, which is inversely proportional to the period of the instability waves.

    摘要 I Extended Abstract II 誌謝 XI 目錄 XIII 圖目錄 XV 表目錄 XVIII 第一章 緒論 1 1.1 前言與研究背景 1 1.1.1 分層流 3 1.1.2 地形引起的流體不穩定現象與微小振幅重力內波 4 1.1.3 剪力不穩定波(Kelvin-Helmholtz與Holmboe)與梯度理查爾森數Ri 8 1.2 研究動機與目的 9 1.3 文獻回顧 10 1.4 本文架構 12 第二章 研究方法 14 2.1 紊流模式 15 2.2 模式假設 19 2.3 OpenFOAM 21 2.3.1 控制方程式 22 2.3.2 紊流閉合方程式 24 2.3.3 數值方法離散(Discretization Schemes) 26 2.3.4 對流項不連續解防止發散---Total Variation Diminishing (TVD) 27 2.3.5 pisoFoam與CFL Condition 29 2.3.6 模式邊界條件 32 第三章 基本觀測資料蒐集與分析 34 3.1 海域基本背景資料 34 3.1.1 都卜勒流速剖面儀(Teledyne RDI Workhorse 300 kHz ADCP) 36 3.1.2 鹽溫深儀(Seabird SBE911plus CTD) 37 3.1.3 聲納回波儀Scientific Echo Sounder, Simrad Inc, EK60) 38 3.2 基本觀測資料分析 39 第四章 模式模擬校正與現地尺度模擬 44 4.1 模式模擬校正與分層水槽實驗比較 44 4.1.1 實驗背景介紹 44 4.1.2 實驗用障礙物高度 45 4.1.3 水槽實驗結果 46 4.1.4 水槽實驗尺度數值模擬結果 47 4.2 現地觀測尺度縮尺模擬 49 4.2.1 分層流通過地形之空間二維分佈 51 4.2.2 分層流通過地形空間 - 時間分佈 54 4.3 現地觀測尺度縮尺模擬之頻譜-能譜分析 55 4.3.1 能譜分析(Turbulent Kinetic Energy Spectrum) 55 4.3.2 特徵正交分解(Proper Orthogonal Decomposition, POD) 56 4.3.3 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) 57 第五章 結果與討論 64 5.1 無因次參數 64 5.2 實驗尺度單一地形流況模擬 65 5.3 現地觀測與模式現地觀測尺度縮尺模擬探討 65 第六章 結論與建議 67 6.1 研究結論 67 6.2 研究建議與未來展望 68 參考文獻 70 附錄一 單一地形與雙地形模擬結果差異探討 74 附錄二 2019綠島不穩定波觀測(紊流儀VMP)分析 84

    1. Augustson, K., A. S. Brun, M. Miesch, and J. Toomre (2015), Grand minima and equatorward propagation in a cycling stellar convective dynamo, The Astrophysical Journal, 809(2), 149.
    2. Bergman, T. L., F. P. Incropera, D. P. DeWitt, and A. S. Lavine (2011), Fundamentals of heat and mass transfer, John Wiley & Sons.
    3. Berkooz, G., P. Holmes, and J. L. Lumley (1993), The proper orthogonal decomposition in the analysis of turbulent flows, Annual review of fluid mechanics, 25(1), 539-575.
    4. Boussinesq, J. (1897), Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section, Gauthier-Villars.
    5. Brauner, N. (2003), Liquid-liquid two-phase flow systems, in Modelling and Experimentation in Two-Phase Flow, edited, pp. 221-279, Springer.
    6. Carpenter, J. R. (2005), Evolution and mixing of asymmetric Holmboe instabilities, University of British Columbia.
    7. Chang, M. H., S. Y. Jheng, and R. C. Lien (2016), Trains of large Kelvin‐Helmholtz billows observed in the Kuroshio above a seamount, Geophysical Research Letters, 43(16), 8654-8661.
    8. Chang, M. H., T. Y. Tang, C. R. Ho, and S. Y. Chao (2013), Kuroshio‐induced wake in the lee of Green Island off Taiwan, Journal of Geophysical Research: Oceans, 118(3), 1508-1519.
    9. Chen, X. (2005), A comparison of hydrostatic and nonhydrostatic pressure components in seiche oscillations, Mathematical and computer modelling, 41(8-9), 887-902.
    10. Davidson, P. (2004), Turbulence. An introduction for scientists and engineers Oxford University Press, edited, Oxford.
    11. Derakhti, M., J. T. Kirby, F. Shi, and G. Ma (2016), Wave breaking in the surf zone and deep-water in a non-hydrostatic RANS model. Part 2: Turbulence and mean circulation, Ocean modelling, 107, 139-150.
    12. Dong, Y.-H., P. Sagaut, and S. Marie (2008), Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method, Physics of Fluids, 20(3), 035104.
    13. Geyer, W. R., A. C. Lavery, M. E. Scully, and J. H. Trowbridge (2010), Mixing by shear instability at high Reynolds number, Geophysical Research Letters, 37(22).
    14. Gregg, M. C. (1989), Scaling turbulent dissipation in the thermocline, Journal of Geophysical Research: Oceans, 94(C7), 9686-9698.
    15. Gualtieri, C., A. Angeloudis, F. Bombardelli, S. Jha, and T. Stoesser (2017), On the values for the turbulent Schmidt number in environmental flows, Fluids, 2(2), 17.
    16. Harten, A. (1997), High resolution schemes for hyperbolic conservation laws, Journal of computational physics, 135(2), 260-278.
    17. Haussling, H. (1977), Viscous flows of stably stratified fluids over barriers, Journal of Atmospheric Sciences, 34(4), 589-602.
    18. Hirt, C. W., and B. D. Nichols (1981), Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of computational physics, 39(1), 201-225.
    19. Holleman, R., W. Geyer, and D. Ralston (2016), Stratified turbulence and mixing efficiency in a salt wedge estuary, Journal of Physical Oceanography, 46(6), 1769-1783.
    20. Howard, L. N. (1961), Note on a paper of John W. Miles, Journal of Fluid Mechanics, 10(4), 509-512.
    21. Hsu, P.-C., M.-H. Chang, C.-C. Lin, S.-J. Huang, and C.-R. Ho (2017), Investigation of the island-induced ocean vortex train of the Kuroshio Current using satellite imagery, Remote Sensing of Environment, 193, 54-64.
    22. Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
    23. Hutter, K., Y. Wang, and I. P. Chubarenko (2010), Physics of Lakes: Volume 1: Foundation of the Mathematical and Physical Background, Springer Science & Business Media.
    24. Issa, R. I. (1986), Solution of the implicitly discretised fluid flow equations by operator-splitting, Journal of computational physics, 62(1), 40-65.
    25. Jalali, M., and S. Sarkar (2017), Large eddy simulation of flow and turbulence at the steep topography of Luzon Strait, Geophysical Research Letters, 44(18), 9440-9448.
    26. Jan, S., Y. J. Yang, J. Wang, V. Mensah, T. H. Kuo, M. D. Chiou, C. S. Chern, M. H. Chang, and H. Chien (2015), Large variability of the Kuroshio at 23.75 N east of Taiwan, Journal of Geophysical Research: Oceans, 120(3), 1825-1840.
    27. Lin, J.-T., and C. J. Apelt (1973), Stratified flow over a vertical barrier, paper presented at Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, Springer.
    28. Long, R. R. (1953), Some aspects of the flow of stratified fluids: I. A theoretical investigation, Tellus, 5(1), 42-58.
    29. Long, R. R. (1972), Illustrated experiments in fluid mechanics: the NCFMF book of film notes, Mit Press.
    30. Mashayek, A., R. Ferrari, S. Merrifield, J. Ledwell, L. St Laurent, and A. N. Garabato (2017), Topographic enhancement of vertical turbulent mixing in the Southern Ocean, Nature communications, 8(1), 1-12.
    31. Miles, J. W. (1961), On the stability of heterogeneous shear flows, Journal of Fluid Mechanics, 10(4), 496-508.
    32. Moline, M. A., K. Benoit-Bird, D. O’Gorman, and I. C. Robbins (2015), Integration of scientific echo sounders with an adaptable autonomous vehicle to extend our understanding of animals from the surface to the bathypelagic, Journal of Atmospheric and Oceanic Technology, 32(11), 2173-2186.
    33. Munk, W. H. (1966), Abyssal recipes, paper presented at Deep Sea Research and Oceanographic Abstracts, Elsevier.
    34. Nicoud, F., and F. Ducros (1999), Subgrid-scale stress modelling based on the square of the velocity gradient tensor, Flow, turbulence and Combustion, 62(3), 183-200.
    35. Perfect, B., N. Kumar, and J. Riley (2020), Energetics of seamount wakes. Part I: Energy exchange, Journal of Physical Oceanography, 50(5), 1365-1382.
    36. Pham, H. T., and S. Sarkar (2014), Large eddy simulations of a stratified shear layer, Journal of Fluids Engineering, 136(6).
    37. Pope, S. B. (2001), Turbulent flows, edited, IOP Publishing.
    38. Sagaut, P. (2006), Large eddy simulation for incompressible flows: an introduction, Springer Science & Business Media.
    39. Shi, J., C. Tong, J. Zheng, C. Zhang, and X. Gao (2019), Kelvin-Helmholtz Billows Induced by Shear Instability along the North Passage of the Yangtze River Estuary, China, Journal of Marine Science and Engineering, 7(4), 92.
    40. Smagorinsky, J. (1963), General circulation experiments with the primitive equations: I. The basic experiment, Monthly weather review, 91(3), 99-164.
    41. Smyth, W., J. Carpenter, and G. Lawrence (2007), Mixing in symmetric Holmboe waves, Journal of physical oceanography, 37(6), 1566-1583.
    42. Smyth, W., J. Moum, and D. Caldwell (2001), The efficiency of mixing in turbulent patches: Inferences from direct simulations and microstructure observations, Journal of Physical Oceanography, 31(8), 1969-1992.
    43. Stewart, R. H. (2008), Introduction to physical oceanography, Robert H. Stewart.
    44. Stiperski, I., S. Serafin, A. Paci, H. Ágústsson, A. Belleudy, R. Calmer, K. Horvath, C. Knigge, J. Sachsperger, and L. Strauss (2017), Water tank experiments on stratified flow over double mountain-shaped obstacles at high-reynolds number, Atmosphere, 8(1), 13.
    45. Sutherland, B. R. (2010), Internal gravity waves, Cambridge university press.
    46. Tominaga, Y., and T. Stathopoulos (2007), Turbulent Schmidt numbers for CFD analysis with various types of flowfield, Atmospheric Environment, 41(37), 8091-8099.
    47. Tritton, D. J. (2012), Physical fluid dynamics, Springer Science & Business Media.
    48. Visbeck, M. (2002), Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions, Journal of atmospheric and oceanic technology, 19(5), 794-807.
    49. Weller, H. G., G. Tabor, H. Jasak, and C. Fureby (1998), A tensorial approach to computational continuum mechanics using object-oriented techniques, Computers in physics, 12(6), 620-631.
    50. Winters, K. B. (2015), Tidally driven mixing and dissipation in the stratified boundary layer above steep submarine topography, Geophysical Research Letters, 42(17), 7123-7130.
    51. Winters, K. B. (2016), The turbulent transition of a supercritical downslope flow: sensitivity to downstream conditions, Journal of Fluid Mechanics, 792, 997.
    52. Winters, K. B., and L. Armi (2012), Hydraulic control of continuously stratified flow over an obstacle, Journal of fluid mechanics, 700, 502.
    53. Winters, K. B., and L. Armi (2014), Topographic control of stratified flows: Upstream jets, blocking and isolating layers, Journal of fluid mechanics, 753, 80.
    54. Zheng, Q., H. Lin, J. Meng, X. Hu, Y. T. Song, Y. Zhang, and C. Li (2008), Sub‐mesoscale ocean vortex trains in the Luzon Strait, Journal of Geophysical Research: Oceans, 113(C4).
    55. Zhou, Z., X. Yu, T. J. Hsu, F. Shi, W. Rockwell Geyer, and J. T. Kirby (2017), On nonhydrostatic coastal model simulations of shear instabilities in a stratified shear flow at high R eynolds number, Journal of Geophysical Research: Oceans, 122(4), 3081-3105.
    56. 王釋虹 (2018), 黑潮中水團層疊交錯和紊流特性之觀測與研究, 71 pp, 國立臺灣大學, 台北市.
    57. 林國文 (2011), 綠島安山岩之實驗岩石學研究, 78 pp, 國立臺灣師範大學, 台北市.
    58. 郭文瑜 (2012), 地形與流場對海洋紊流混合的效應, 93 pp, 國立中山大學, 高雄市.
    59. 陳振雄 (2010), 應用希爾伯特-黃轉換之訊號濾波研究, Journal of Science and Engineering Technology, 6(1), 75-84.
    60. 黃榮鑑 (1985), 大氣密度層流中背面波形成之研究, 大氣科學, 12(1), 7-22.
    61. 鄭欣雅 (2013), 黑潮與水下海脊交互作用:高頻振盪與密度翻轉, 36 pp, 國立臺灣海洋大學, 基隆市.

    無法下載圖示 校內:2026-07-31公開
    校外:2026-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE