簡易檢索 / 詳目顯示

研究生: 吳宗憲
Wu, Tsung-Hsien
論文名稱: Cosserat 彈性介質之格林函數及內含物問題
Green's function and inclusion problems for Cosserat media
指導教授: 陳東陽
Chen, Tungyang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 106
中文關鍵詞: 微極彈性理論格林函數內含物問題Eshelby張量
外文關鍵詞: Cosserat elasticity, Micropolar elasticity, Eshelby tensor
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要探討Cosserat彈性理論的格林函數及其一階與二階微分,及其Eshelby張量。首先介紹Cosserat彈性理論的基本方程式,接著介紹格林函數的定義與概念,並使用傅立葉變換解Cosserat彈性材料的格林函數,在材料係數具有一定的對稱條件下,可以將格林函數簡化至一個單位圓的線積分,最後以高斯積分法作數值積分求出數值解並與中心對稱材料格林函數之解析解比較其誤差。之後推導格林函數的一階導數與二階導數,同樣可以簡化成一個單位圓的線積分,最後進行數值計算,並將結果與中心對稱且等向性之Cosserat材料的解析解相比較其誤差。最後推導Eshelby張量,並介紹當內含物為橢球形狀時的Eshelby張量。

    Cosserat elasticity is a refined elasticity theory used to describe the deformation of elastic media with oriented particles. In addition to three displacements, a micropolar particle has an additional three micro-rotations, allowing it to link the couple moments as well as the stresses. The framework has an intrinsic length scale and is capable to characterize various materials with sufficient insight information, such as foams, materials with helical or twisted fibers. A more recent implication can be directed to the simulation of metametrials. Motivated by the latter progress, in this work, we aim to provide some theoretical studies on Cosserat elasticity. Specifically, we will derive the Green's function and its spatial derivatives. Inclusion problem in an infinite Cosserat medium is also examined. The method of Fourier transform is employed in the formulation. Centro- and non-centrosymmetry Cosserat elasticity are studied. We show that, under a certain restriction on the constitutive material parameters, Green's function can be expressed as a line integral along a unit circle. This form permits us to evaluate the results accurately by Gaussian quadrature. In addition, we find that, for the inclusion problems, even when the eigenstrain or the eigen-curvature is constant, the resulting strain and curvature tensor are not spatially uniform, in distinct with the famous constant Eshelby tensor in classical elasticity. In contrast it is a polynomial of position of second orders. We show that the resulting expressions can be expressed as a surface integral on a unit sphere and can be evaluated by numerical integration procedure. All these results permit us to make further explorations in metamaterials or in composites made of two or more different constituents.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 第一章 緒論 1 1.1 Cosserat彈性理論背景與研究 1 1.2 格林函數與應用 2 1.3 論文簡介 4 第二章 Cosserat彈性理論 5 2.1 Cosserat彈性理論的自由度(Degree of freedom) 5 2.2 Cosserat彈性理論的變形(Deformation) 6 2.3 Cosserat彈性理論的材料組成律 9 2.4 Cosserat彈性理論的平衡方程式(equilibrium equations) 10 第三章 Cosserat彈性理論的格林函數 15 3.1 格林函數(Green’s function) 15 3.2 Cosserat彈性理論的格林函數 16 3.3 推導程序 17 3.4 數值計算 27 第四章 格林函數的導數 35 4.1 格林函數的一階導數 35 4.2 格林函數的二階導數 38 4.3 數值計算 42 第五章 內含物問題(inclusion problem) 55 5.1 彈性介質的Eshelby張量 55 5.2 Cosserat介質的Eshelby張量 57 5.3 橢球內含物 62 5.4 數值計算 66 第六章 結論與未來展望 70 6.1 結論 70 6.2 未來展望 71 參考文獻 72 Appendix A 77 A.1 分塊矩陣(block matrix)的反矩陣 77 A.2 等向性非中心對稱Cosserat材料的 , , , 79 Appendix B 81 B.1 高斯積分法(Gaussian Quadrature)的點座標 與權重 81 Appendix C 84 C.1 格林函數程式 84 C.2 格林函數的一階、二階導數程式 89 C.3 Eshelby張量的程式 99

    Asaro, R. J. and Barnett, D. M., The non-uniform transformation strain problem for an anisotropic ellipsoidal inclusion, J. Mech. Phys. Solids 23, 77, 1975.
    Bacon, D. J ., Barnett, D. M. and Scattergood, R. O., Anisotropic Continuum Theory of Lattice Defects, Prog. Mat. Sci. 23, 51, 1979.
    Barnett, D. M., The Precise Evaluation of Derivatives of the Anisotropic Elastic Green’s Functions, Phys. Stat. Sol. (b) 49, 741, 1972.
    Chen, T., Green’s functions and the non-uniform transformation problem in a piezoelectric medium, Mech. Res. Commun. 20, 271, 1993.
    Chen, T., Some exact relations of in inclusions in piezoelectric media, Int. J. Engng. Sci. 32, 553, 1994.
    Cheng, Z. Q. and Batra, R. C., Exact Eshelby tensor for a dynamic circular cylindrical inclusion, J. Appl. Mech.66, 563, 1999.
    Cheng, Z. Q. and He, L. H., Micropolar elastic field due to a circular cylindrical inclusion, Int. J. Engng. Sci. 35, 659, 1997.
    Cheng, Z. Q. and He, L. H., Micropolar elastic field due to a spherical inclusion, Int. J. Engng. Sci. 33, 389, 1995.
    Cheng, Z. Q., and He, L. H., Steady-State Response of a Cosserat Medium with a Spherical Inclusion, Acta Mechanica 116, 97, 1996.
    Cosserat, E. and Cosserat, F., Théorie des corps déformables, Paris, A. Hermann et fils, 1909.
    Dhaliwal, R. S. and Wang, J., Green’s functions in generalized micropolar thermoelasticity, Appl. Mech. Rev.46, 316, 1993.
    Douglas, J. and Burden, R., Numerical Method, Cengage Learning, 2003.
    E. Artin, Galois Theory, Dover Publications, 1998.
    Eringen, A. C. and Suhubi, E. S., Nonlinear theory of simple micro-elastic solids - I, Int. J. Engng. Sci. 2, 189, 1964.
    Eringen, A. C., Linear Theory of Micropolar Elasticity, J. Math. Mech. 15, 909, 1966.
    Eringen, A. C., Microcontinuum Field Theories, I: Foundations and Solids, Springer, New York, Berlin, Heidelberg, 1999.
    Eringen, A. C., Theory of Micropolar Elasticity. In Fracture (Edited by H. Leibowitz), 2, Academic Press, New York, 622, 1968.
    Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problem, Proc. R. Soc. Lond. A241, 376, 1957.
    Hadjesfandiari, A. R. and Dargush, G. F., Fundamental solutions for isotropic size-dependent couple stress elasticity, Int. J. Solids Struct. 50, 1253, 2013.
    Haijun, Z. and Zhong-can, O., Bending and twisting elasticity : A revised Marko-Siggia model on DNA chirality, Phys. Rev. E 58, 4816, 1998.
    Ieşan, D. and Chirita, S., Saint-Venant’s problem for composite micropolar elastic cylinders, Int. J. Engng. Sci. 17, 573, 1979.
    Ieşan, D. and Chirita, S., Saint-Venant’s problem for composite micropolar elastic cylinders, Int. J. Engng. Sci., 17, 573-586, 1979.
    Ieşan, D., Torsion of micropolar elastic beams, Int. J. Engng. Sci., 9, 1047-1060, 1971.
    Joumaa, H., Ostoja-Starzewski, M., Stress and couple-stress invariance in non-centrosymmetric micropolar planar elasticity, Proc. R. Soc. A. 467, 2896, 2011.
    Kinoshita, N. and Mura, T.,Elastic fields of inclusions in anisotropic media, Phys. Stat. Sol. A. 5, 759, 1971.
    Kiusalaas, J., Numerical Method in Engineering with Matlab, Cambridge, 2005.
    Kumar, R. and Choudhary, S., Influence and Green’s functions for orthotropic micropolar continua, Arch. Mech. 54,185, 2002.
    Lakes, R. S., Elastic and viscoelastic behavior of chiral materials, Int. J. Mech. Sci. 43, 1579, 2001.
    Lakes, R. S., Is bone elastically noncentrosymmetric? 34th ACEMB, Houston TEXAS, September 21-23, 1981.
    Laws, N., The determination of stress and strain concentrations at an ellipsoidal inclusion in an anisotropic material, J. Elasticity 7, 91, 1977.
    Lazar, M. and Kirchner, H.O.K.. The Eshelby tensor in nonlocal elasticity and in nonlocal micropolar elasticity, J. Mech. Mater. Struct. 1, 325, 2006.
    Liu, X. N., Huang, G. L. and Hu, G. K., Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices, J. Mech. Phys. Solids 60, 1907, 2012.
    Ma, H. S. and Hu, G. K., Eshelby tensors for an ellipsoidal inclusion in a micropolar material. Int. J. Eng. Sci. 44, 595, 2006.
    Markov, K., On the inhomogeneity problem in micropolar elasticity, Theoretical and Applied Mechanics 3, 52, 1979.
    Mura, T., Micromechanics of Defects in Solids, Martinus Nijhoff, 1987.
    Nowacki, J. P., Green’s function for a hemitropic micropolar continuum. Bulletin De L’Academie Polonaise Des Sciences XXV (8), 235, 1977.
    Nowacki, N.,Theory of Micropolar Elasticity, Springer-Verlag, Wien,1970.
    Ostoja-Starzewski, M. and Jasiuk, I.,Stress invariance in planar Crosserat elasticity, Proc. R. Soc. A. 451, 453, 1995.
    Robbie, K., Brett, M. J. and Lakhtakia, A., Chiral sculpted thin films, Nature 384, 616, 1996.
    Sadovskaya, O. V.,Numerical Analysis of 3D Dynamic Problems of the Cosserat Elasticity Theory subject to Boundary Symmetry Conditions, Comp. Math. Math. Phys. 49, 304, 2009.
    Sandru, N., On some problems of the linear theory of the asymmetric elasticity, Int. J. Engng Sci. 4, 81, 1966.
    Sharma, P. and Dasgupta, A., Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materials containing spherical and cylindrical inhomogeneities, Phys. Rev. B 66, 24110:1, 2002.
    Sharma, P., Size-dependent elastic fields of embedded inclusions in isotropic chiral solids, Int. J. Solids Struct.41, 6317, 2004.
    Vardoulakis, I., Cosserat Continuum Mechanics, 1. 3rd, National Meeting on Generalized Continuum Theories and Applications, 2009.
    Voigt, W., Theoretische studien über die elasticitätsverhältnisse der krystalle, Abh. Ges. Wiss. Göttingen, 34, 1887.
    W. Nowacki, Theory of Asymmetric Elasticity, Pergamon Press,1986.
    Wang, C. Y. and Achenbach, J. D., Elastodynamic fundamental solutions for anisotropic solids, Geophys. J. Int. 118, 384, 1994.
    劉祐翔,圓柱中性扭轉問題於Cosserat彈性材料之探討,國立成功大學土木工程研究所碩士論文,2013。
    蔡佳蓉,具手徵特性微極彈性材料之廣義聖維南問題,國立台灣大學土木工程研究所碩士論文,2012。

    下載圖示 校內:2015-01-27公開
    校外:2016-01-27公開
    QR CODE