| 研究生: |
吳孟諶 Wu, Meng-Chen |
|---|---|
| 論文名稱: |
不同冷卻型態對於直立式太陽能熱水系統之熱傳性能影響 Effects of the cooling section on the heat transfer performance of wall solar-water heating |
| 指導教授: |
賴啟銘
Lai, Chi-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 熱虹管 、太陽熱能 |
| 外文關鍵詞: | Thermosyphon, solar thermal |
| 相關次數: | 點閱:57 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將熱虹管系統結合建築外牆,利用熱虹管系統將外牆所收集到的太陽熱能加熱熱虹管中的工作流體,將熱量回收利用。本研究藉由實驗探討直立式太陽能熱水系統在不同的冷卻型態作用時,觀察不同冷卻型態對於整體系統的熱傳性能影響。
實驗模型中,外牆部分以長80公分,寬為40公分,厚度為0.16公分之鋁合金板模擬,結合同尺寸功率為800W/m^2之加熱片。矩形熱虹管為長70公分,寬20公分,截面邊長3公分,厚度為0.12公分之正方形鋁合金管。模型系統冷卻端有30公分及45公分兩種長度的冷卻水套管,並可以使用熱虹管內的沉水馬達控制管內對流模式。
本實驗使用兩種不同長度的冷卻水套管,並搭配不同溫度的冷卻水,在自然對流模式以及混合對流模式兩種模式作用下,以加熱片供應不同瓦數之熱量以模擬太陽日照,並觀察熱虹管系統內部工作流體流速、工作流體熱通量及冷卻端熱通量,並做系統熱傳性能分析。
實驗結果顯示,在使用混合對流模式下,熱虹管內工作流體流速將會大幅提升、可以增高工作流體熱通量,並能有效提高熱傳效率。使用30公分冷卻水套管時,冷卻端可以有較大的熱通量,且因模型設計緣故,30公分冷卻水套管之位能差較大,導致熱虹管中的工作流體流速也較快,使工作流體熱通量上升,能提升熱傳效果,並且在使用20℃冷卻水時,系統有較好的熱傳效果。但在低瓦數、低溫冷卻水和混合對流模式下,工作流體形成紊流且熱量供給較少,導致實驗測點所得數據在計算後,工作流體流速易有放大的現象。熱傳效果由強至弱依序為,混合對流模式使用30公分冷卻水套管、自然對流模式使用30公分冷卻水套管、混合對流模式使用45公分冷卻水套管、自然對流模式使用45公分冷卻水套管。
This research combines thermosyphon loops with building walls, and collects solar heat from building walls to heating working fluid in the thermosyphon loops. The heated working fluid can be used for other purposes to increase energy usage. The study explore the effects of the cooling section on the heat transfer performance of wall solar-water heating by experiments.
The experimental results show that in the mixed convection mode, the flow rate of the working fluid in the thermosyphon loops will be greatly improved, and the heat transfer efficiency will also be effectively increased. Because of the model design, the big potential difference of the 30 cm cooling system caused a faster flow rate of the working fluid in the hermosyphon loops, and improved the heat transfer effect. Also, in 20 °C cooling water, the system will have better heat transfer effect. However, in the low wattage, low-temperature cooling water and mixed convection mode, the working fluid becames turbulence and supplied less heat, which led to the phenomenon that the flow rate of the working fluid is easily amplified after the calculation of the data obtained from the experimental points. The heat transfer results from strong to weak are : the mixed convection mode with a 30 cm cooling system, the natural convection mode with a 30 cm cooling system, the mixed convection mode with a 45 cm cooling system, and the natural convection mode with a 45 cm cooling system.
B. J. Huang, C. T. Hsieh. A simulation method for solar thermosyphon collector. Solar Energy, Vol 35, No 1, pp31-43,1985.
Chr. Lamnatou, J.D. Mondol, D. Chemisana , C. Maurer. Modelling and simulation of Building-Integrated solar thermal systems: Behaviour of the system. Renewable and Sustainable Energy Reviews, Vol 48, pp 178-191,2015.
G. Tan, D.L. Zhao. Study of a thermoelectric space cooling system integrated with phase change material. Applied Thermal Engineering, Vol 86, pp 187-198,2015.
J. B. Keller, Periodic oscillations in a model of thermal convection. Journal of Fluid Mechanics, Vol 26, No 3, pp599-606,1966.
K. Chen, P. Chailapo, W. Chun, S. Kim, K. J. Lee. The dynamic behavior of a bayonet-type thermal diode. Solar Energy, Vol 64, No 4-6, pp257-263,1998.
M. A. Bernier, B. R. Baliga. A 1-D/2-D model and experimental results for a closed-loop thermosyphon with vertical heat transfer sections. International Journal of Heat and Mass Transfer, Vol 35, No 11, pp2969-2982,1992.
M. G. Parent, TH. H. VAN DER MEER, K. G. T. Hollands. Natural convection heat exchangers in solar water heating systems: Theory and experiment. Solar Energy, Vol 45, NO 1, pp43-52,1990.
N. Dimri, A. Tiwari, G.N. Tiwari. Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Conversion and Management, Vol 146, pp 68-77,2017.
R. Li, Y.J. Daia, R.Z. Wanga. Experimental and theoretical analysis on thermal performance of solar thermal curtain wall in building envelope. Energy and Buildings, Vol 87, pp324-334,2015.
R.T. Dobson, J.C. Ruppersberg. Flow and heat transfer in a closed loop thermosyphon. Part I – theoretical simulation. Journal of Energy in Southern Africa, Vol 18, No 3, pp 41-48,2007.
R.T. Dobson, J.C. Ruppersberg. Flow and heat transfer in a closed loop thermosyphon. Part II – experimental simulation. Journal of Energy in Southern Africa, Vol 18, No 3, pp 41-48,2007.
S. Varga, A. C. Oliveira, C. F. Afonso. Characterisation of thermal diode panels for use in the cooling season in buildings. Energy and Buildings, Vol 34, No 3, pp227-335,2002.
T. Matuska, B. Sourek. Facade solar collectors. Solar Energy, Vol 80, No 11, pp 1443-1452,2006.
W. Chun, Y.J. Ko, H.J. Lee, H. Han, J.T. Kim , K. Chen. Effects of working fluids on the performance of a bi-directional thermodiode for solar energy utilization in buildings. Solar Energy, Vol 83, No 3, pp409-419,2009.
W. Pang, Y. Liu ,S. Q. Shao, X. Gao. Empirical study on thermal performance through separating impacts from a hybrid PV/TE system design integrating heat sink. International Communications in Heat and Mass Transfer, Vol 60, pp 9-12,2015.
Y. Su, Z. G. Chen. 2-D numerical study on a rectangular thermosyphon with vertical or horizontal heat transfer sections. Int. J. Heat Mass Transfer, Vol 38, No 17, pp3313-3317,1995.
朱旭山,熱電材料與元件之發展與應用,熱管理技術專題,工業材料雜誌,220期,pp93-103,2004。
林志俞,太陽能選擇性吸收膜對於熱電晶片效能影響,國立勤益科技大學機械工程系碩士論文,2011。
張育瑋,熱電致冷散熱模組理論分析及實驗研究,國立臺灣大學工學院機械工程學系博士論文,2009。
莊毓婷,應用熱電晶片設計具多功能安全監控之節能研究,逢甲大學資訊電機工程碩士在職專班碩士論文,2014。
陳榮展,以系統動態觀點建構國軍太陽能熱水器效益評估模 式—以某營區為例,國防大學管理學院資源管理及決策研究所碩士論文,2013。
游家旺,太陽光電帷幕牆單元熱性能分析,國立成功大學建築研究所碩士論文,2014。
黃家陞,矩型單相熱虹迴路之熱傳特性實驗研究,南台科技大學能源工程研究所碩士學位論文,2011。
劉育任,利用散熱系統提升熱電發電晶片應用於引擎廢熱回收之效率研究,南台科技大學機械工程研究所碩士學位論文,2009。
賴玫儒,影響高雄市民安裝太陽能熱水器之因素探討,國立中山大學公共事務管理研究所碩士論文,2014。