| 研究生: |
李政達 Lee, Cheng-Ta |
|---|---|
| 論文名稱: |
考量經濟採購量與品質成本模式之陶瓷基板材料選擇模式 A Quality Cost Model with Economic Order Quantity Consideration for Ceramic Substrate Material Selection |
| 指導教授: |
吳植森
Wu, Chih-sen 利德江 Li, Der-chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 陶瓷平板天線 、經濟採購量 、品質損失函數 |
| 外文關鍵詞: | Ceramic patch antenna, Economic order quantity, Quality loss function |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在品質要提升,成本要下降的企業競爭環境下,如何改善品質,降低成本一直是企業管理上最重要的項目之一。然而品質與成本之間卻又存在著矛盾,要提升品質通常需要花費更多的成本,如何取得最佳平衡點,便成為一道難題。
陶瓷平板天線(Ceramic patch antenna)主要品質特性為天線的共振頻率(Resonator frequency,f0),因陶瓷材料物理特性、製程能力與客戶規格等因素,其生產成本上有不同之變化,共振頻率變異程度之大小,成為生產成本高低的要素。個案公司即遭遇到因共振頻率變異大,須額外增加特性調整成本,導致生產成本偏高之問題。陶瓷基板材料(Ceramic substrate material)是影響造成共振頻率製程變異優劣的要因,如何評估陶瓷基板材料的優劣,一直是個案公司待解決的問題。
本論文以個案公司25mm×25mm×4mm陶瓷平板天線為研討對象,利用品質損失函數(Quality loss function)之觀念,並考量經濟採購量(Economic order quantity)之因素,建構出陶瓷基板材料之評估選擇模式,分析不同陶瓷基板材料廠商品質成本上之差異,進而取得出最適生產的陶瓷基板材料。
本研究發現,當共振頻率客戶規格為±3MHz時,在不考量經濟採購量條件下,陶瓷平板天線之總合成本以BK20陶瓷基板為最低;在考量經濟採購量條件下,其總合成本以SK20陶瓷基板為最低。
One of the most important items for business administration is to think how to improve quality and how to reduce the cost in nowadays-competitive market. However the statement of quality and cost is contradiction, which means people usually need to spend more cost, as they want to improve quality. Therefore, it would be a tough problem to make a perfect balance between quality and the cost.
Aerial resonator frequency is the main character of ceramic patch antenna. The production costs will depend on some factors such as the natural characteristics of ceramic material, the process capability and the customer standards. The variation of resonator frequency will be the main cause for the prime cost. According to these factors, the sample company would confront the variance inflation, need to add extra characteristics to revise the cost, and the problem of a superior grade of the production cost. Ceramic substrate material is the principal factor to cause pros and cons of the resonator frequency. How to estimate the advantage or the inferiority of ceramic material is always an un-solved problem for the sample company.
The 25mm×25mm×4mm ceramic patch antenna of the sample company is the discussion object in this study. We use the quality loss function concept and measuring the economic order quantity factor to construct the evaluation option models of ceramic substrate material. Analyzing the difference between the diverse ceramic substrate material qualities of vendor to draw out the most suitable ceramic substrate material for output.
According to this investigation, we find that, if we don’t consider the economical purchase quantity, BK20 ceramic substrate will be the lowest total cost of ceramic patch antenna in the resonator frequency specification of ±3MHz; however if we consider the economical purchase quantity, SK20 ceramic substrate will be the lowest total cost of ceramic patch antenna in the resonator frequency specification of ±3MHz.
中文部分:
李俊遠,“GPS微波介電材料與GPS天線設計概念”,電子與材料雜誌,第14期,中華民國九十一年。
汪建民,傅勝利,“陶瓷技術手冊(上)”,經濟部技術處、中華民國產業科技發展協進會、中華民國粉末冶金協會,臺北市,403-440頁,中華民國八十三年。
吳朗,“電子陶瓷(介電) ”,全欣科技圖書股份有限公司,臺北市,中華民國八十三年。
邱碧秀,“電子陶瓷材料”,徐氏基金會,臺北市,81頁,中華民國八十六年。
許江圳,“考慮田口損失下之最佳經濟生產批量”,國立成功大學工業管理研究所碩士 論文,中華民國九十一年六月。
黃智裕,“平板陶瓷微帶天線”,工業材料119期,中華民國八十五年。
傅和彥,黃士滔,“品質管理”,前程企業管理有限公司,臺北縣,三版,中華民國八十三年。
蘇朝墩,“品質工程”,中華民國品質學會,臺北市,三版,中華民國八十三年。
英文部分:
Bhartia, P., Bahl, I., Garg, R. and Ittipiboon, A., Microstrip Antenna Design Handbook, Artech House Boston London, pp.78-82, 2003.
Cohn, S. B., “Microwave Bandpass Filter Containing High-Q Dielectric Resonator”, IEEE Transaction on Microwave Theory and Techniques, 16, pp. 210-217, 1968.
Dahl, B. L. and Wilson, W. W., “The Logistical Costs of Marketing Identity Preserved Wheat”, Department of Agribusiness and Applied Economics, 2002.
Deschamps, G. A., “Microstrip Microwave Antenna”, 3rd United States Air Force Symposium on Antenna, 1953.
Dutta, S., “Indian Retailing Business and Supply Chain Management - A Strategic Interface”, TIG Research Journal, 1, No. 1, 2008.
Gutton, H. and Baissunot, G., “Flat Aerial for Ultra High Frquencies”, French Patent No. 70313, 1955.
Haneishi, M. and Yoshida, S., “A Design Method of Circularly Polarized Rectangular Microstrip Antenna by One-point Feed”, Electronics and Communications in Japan, 64, pp. 46-54, 1981.
Howell, J. Q., “Microstrip Antenna”, IEEE Transaction on Antennas and Propagation, 23, pp. 90-93, 1975.
Jaakola, T., Uusimaki, A., Rautioaho, R. and Leppavuori, S., “Matrix Phase in Ceramic with Composition Near BaO-Nd2O3-5TiO2”, Journal of the American Ceramic Society, 69(10), pp. c234-c235, 1986.
Kageyama, K. and Takata, M., “Doelectric Characteristics of PdO-BaO-La2O3-TiO2 at Microwave Frquencies”, Japanese Journal of Applied Physics, 24, pp. 1045-1047, 1985.
Leon, R. V. and Wu, C. F., “A Theory of Performance Measures in Parameter Design”, Statistica Sinica, 2, pp. 335-358, 1992.
Munson, R. E., “Conformal Microstrip Antenna and Microstrip Places Arrays”, IEEE Transaction on Antennas and Propagation, 22, pp. 74-78, 1974.
Nomura, S., “Ferroelectrics”, Tokyo Institute of Technology, 49, pp. 61-70, 1983.
O’ Bryan, Jr. H. M. and Thomson, Jr. J., “Phasc Equilibria in the TiO2-Rich Reqion of the System BaO-TiO2”, Journal of the American Ceramic Society, 57(12), pp. 522-526, 1974.
O’ Bryan, Jr. H. M., Thomson, Jr. J. and Plourde, J. K., “A New BaO-TiO2 Compound with Temperature- Stable High Permittivity and Low Microwave Loss”, Journal of the American Ceramic Society, 57(10), pp. 450-453, 1974.
Okaya, A., “The Rutile Microwave Resonator”, Proceedings of the IRE, 45, pp. 19-21, 1960.
Ram, G., Shailesh, K. and Tonya, B., “Production Economics and Process Quality ”, International Journal of Production Economics, 71, pp. 343-350, 2001.
Richtmyer, R. D., “Dielectric Resonator”, Japanese Journal of Applied Physics, 10, pp. 391-398, 1939.
Stevenson, W. J., “Operation Management 7e”, McGraw-Hill Companies Inc (Taiwan), 13, pp. 508-533, 2002.
Stiglitz, M. R. and Sethares, J. C., “Frequency Stability in Dielectric Resonator”, Proceedings of the IEEE, 53, pp. 2081-2092, 1962.
Taguchi, G., “Introduction to Quality Engineering: Designing Quality into Products and Processes”, Asian Productivity Organization Tokyo, 1986.
Tribus, M. and Szonyi, G., “An Alternative View of the Taguchi Approach”, Quality Progress, 22, pp. 46-52, 1989.
Tsou, J. C., “Economic order quantity model and Taguchi’s cost of poor quality,” Applied Mathematical Modeling, 31, pp. 283-291, 2007.
Tsou, J. C. and Chen, J. M., “Case study: quality improvement model in a car seat assembly line,” Production Planning & Control, 16, pp. 681-690, 2005.
Wu, J. M., Chang, M. C. and Yao, P. C., “Reaction Sequence and Effects of Calination and Sintering on Microwave Properities of (Ba,Sr)O-Sm2O3-TiO2 Ceramics”, Journal of the American Ceramic Society, 73(6), pp. 1599-1605, 1990.