簡易檢索 / 詳目顯示

研究生: 張哲維
Chang, Che-Wei
論文名稱: 探討異染色質抑制高糖飲食誘導腫瘤進程之機制
Heterochromatin suppresses high-dietary-sugar induced tumor progression
指導教授: 顏賢章
Yan, Shian-Jang
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 51
中文關鍵詞: 高糖飲食異染色質表觀遺傳學腫瘤抑制
外文關鍵詞: Epigenetics, Heterochromatin protein 1(HP1), high dietary sugar (HDS), heterochromatin, tumor suppression
相關次數: 點閱:187下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高糖飲食在現代社會的精緻飲食當中已是難以避免,長期的高糖飲食容易引發代謝性疾病例如糖尿病等。近年來許多研究也指出高糖飲食所引發的代謝失調容易助長腫瘤組織的增生。另外高糖飲食所造成的胰島素抗性和避免細胞凋亡更加造成腫瘤的惡化。高糖飲食也可以透過染色質的修飾調控細胞的表觀遺傳狀態。異染色質蛋白1(Heterochromatin protein1, HP1) 參與異染色質的形成並且可以抑制基因的轉錄與表達。在許多人類癌症上有發現表觀遺傳學失調的現象,文獻也報導異染色質蛋白1在癌症中表現量降低的現象。然而,表觀遺傳的分子調控機制是否在高糖所引發的腫瘤進程扮演重要的角色目前仍不清楚。本研究以果蠅做為高糖飲食的癌症動物,並藉由在Ras/Src 或者Ras/Scrib誘導的腫瘤模式中過度表現或者抑制異染色質蛋白1,來了解異染色質在高糖引發之癌症所扮演的角色。我們發現這兩個腫瘤系統在經過高糖誘導之後都會增加腫瘤動物的生長負擔,造成延緩發育以及降低動物的生存率。除此之外,我們發現高糖飲食可以降低異染色質的表現量,並且造成腫瘤組織的惡化。有趣的是,當我們在兩個高糖誘導腫瘤系統中過度表現或者抑制異染色質蛋白1後,不只能有效地減緩發育延遲、增加整體癌症模式生物的生存率,更有效地造成腫瘤的減小。另外我們也發現,在高糖誘導的腫瘤系統過度表現或者抑制異染色質蛋白1後,可以有效地抑制wingless訊息傳遞路徑,也可以增加腫瘤細胞凋亡。另外,異染色質蛋白1表現量的增加能造成細胞凋亡相關基因的mRNA表現量增加。最後,在染色質免疫沉澱實驗中發現醣質新生相關的基因可以被異染色質蛋白質1所調控。因此,這些證據建議異染色質抑制高糖飲食誘導腫瘤進程。這個研究有助於了解高糖誘導腫瘤的表觀遺傳分子機制,對於高糖飲食所導致的代謝性疾病與癌症治療提供新的治療與解決方向。

    High dietary sugar (HDS) not only increases the risk of metabolic diseases but also promotes tumor progression through insulin insensitivity and apoptosis avoidance. Recent evidence has shown that HDS alters epigenome via histone modification. Heterochromatin protein 1(HP1), a major protein in heterochromatin formation, has been found down-regulated in various human cancers. However, the molecular mechanisms by which heterochromatin mediates the progression of tumor via HDS is still unknown. Here, we use Drosophila as an animal model to investigate the role of heterochromatin in HDS-induced tumor progression in vivo. We use two Drosophila tumor systems which are created by carrying the oncogene ras mutation and tumor suppressor gene csk or scrib mutation. We demonstrate that HDS promotes tumor progression in both tumor systems. Interestingly, heterochromatin levels are important for tumor suppression as well as the development and survival of tumor animals. Animals with overexpression and knockdown of HP1 specifically in tumor of both systems show decreased tumor growth and improved pupariation and eclosion rate. Moreover, HDS contributes to heterochromatin reduction and severe tumor progression. Overexpression and knockdown of HP1 decrease wingless signaling and increase apoptosis specifically in tumors. Finally, we identified HP1-regulated genes in apoptosis and glucose metabolism, which may be involved in HDS-induced tumor progression. Taken together, our results suggest that heterochromatin suppresses HDS-induced tumorigenesis. This study may contribute to the prevention and treatment of cancers associated with HDS-induced metabolic disorders.

    中文摘要 1 Abstract 2 Acknowledgement 3 Index 4 Figure index 6 1. Introduction 8 1-1 Cancer and diabetes 8 1-2 Cancer and high dietary sugar 8 1-3 Heterochromatin structure and function 10 1-4 The role of epigenetics in cancer 11 1-5 in vivo model, Drosophila cancer systems and HDS-induced tumor in this research 12 2. Materials and Methods 14 2-1 Fly stocks 14 2-2 Fly culture 14 2-3 Western blotting 15 2-5 TUNEL assay 16 2-6 Gene switch system (Inducible system) 16 2-7 ChIP assay 16 2-8 Quantitative RT-PCR 17 3. Results 19 3-1 High dietary sugar aggravates tumor progression 19 3-2 High dietary sugar decreases heterochromatin levels 19 3-3 Heterochromatin levels are important for the survival and development of high dietary sugar induced-tumor animals 20 3-4 High or low levels of heterochromatin suppresses tumor growth in high dietary sugar 22 3-5 High or low heterochromatin levels alters proliferation, apoptosis and wingless signaling of tumor cells in high dietary sugar 22 3-6 Heterochromatin may directly regulate PEPCK in gluconeogenesis 24 4. Discussion 26 4-1 Summary 26 4-2 HP1 regulates heterochromatin levels and its role in cancer development 27 4-3 The epigenetic role of HDS in diabetes and cancer progression 28 4-4 The limitations and advantages of the Drosophila HDS-induced cancer model 29 4-5 Significance of this study 30 5. References 31 6. Figures 37

    Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., . . . Venter, J. C. (2000). The genome sequence of Drosophila melanogaster. Science, 287(5461), 2185-2195.
    Arts, R. J., Novakovic, B., Ter Horst, R., Carvalho, A., Bekkering, S., Lachmandas, E., . . . Netea, M. G. (2016). Glutaminolysis and Fumarate Accumulation Integrate Immunometabolic and Epigenetic Programs in Trained Immunity. Cell Metab, 24(6), 807-819. doi: 10.1016/j.cmet.2016.10.008
    Atkinson, M. A., Eisenbarth, G. S., & Michels, A. W. (2014). Type 1 diabetes. Lancet, 383(9911), 69-82. doi: 10.1016/S0140-6736(13)60591-7
    Beck, D., Bonasio, R., Kaneko, S., Li, G., Margueron, R., Oda, H., . . . Reinberg, D. (2010). Chromatin in the Nuclear Landscape. Cold Spring Harbor symposia on quantitative biology, 75, 10.1101/sqb.2010.1175.1052. doi: 10.1101/sqb.2010.75.052
    De Lucia, F., Ni, J. Q., Vaillant, C., & Sun, F. L. (2005). HP1 modulates the transcription of cell-cycle regulators in Drosophila melanogaster. Nucleic Acids Res, 33(9), 2852-2858. doi: 10.1093/nar/gki584
    Dialynas, G. K., Vitalini, M. W., & Wallrath, L. L. (2008). Linking Heterochromatin Protein 1 (HP1) to cancer progression. Mutat Res, 647(1-2), 13-20. doi: 10.1016/j.mrfmmm.2008.09.007
    Doggett, K., Grusche, F. A., Richardson, H. E., & Brumby, A. M. (2011). Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol, 11, 57. doi: 10.1186/1471-213x-11-57
    El-Osta, A., Brasacchio, D., Yao, D., Pocai, A., Jones, P. L., Roeder, R. G., . . . Brownlee, M. (2008). Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med, 205(10), 2409-2417. doi: 10.1084/jem.20081188
    Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143), 433-440. doi: 10.1038/nature05919
    Garcia-Jimenez, C., Gutierrez-Salmeron, M., Chocarro-Calvo, A., Garcia-Martinez, J. M., Castano, A., & De la Vieja, A. (2016). From obesity to diabetes and cancer: epidemiological links and role of therapies. Br J Cancer, 114(7), 716-722. doi: 10.1038/bjc.2016.37
    Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., . . . Yee, D. (2010). Diabetes and cancer: a consensus report. Diabetes Care, 33(7), 1674-1685. doi: 10.2337/dc10-0666
    Gonzalez, C. (2013). Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer, 13(3), 172-183. doi: 10.1038/nrc3461
    Goodsell, D. S. (1999). The molecular perspective: the ras oncogene. Oncologist, 4(3), 263-264.
    Hahn, S. A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., . . . Kern, S. E. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 271(5247), 350-353.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70.
    Harris, R. E., Setiawan, L., Saul, J., & Hariharan, I. K. (2016). Localized epigenetic silencing of a damage-activated WNT enhancer limits regeneration in mature Drosophila imaginal discs. 5. doi: 10.7554/eLife.11588
    Hirabayashi, S., Baranski, T. J., & Cagan, R. L. (2013). Transformed Drosophila cells evade diet-mediated insulin resistance through wingless signaling. Cell, 154(3), 664-675. doi: 10.1016/j.cell.2013.06.030
    Hirabayashi, S., & Cagan, R. L. (2015). Salt-inducible kinases mediate nutrient-sensing to link dietary sugar and tumorigenesis in Drosophila. Elife, 4, e08501. doi: 10.7554/eLife.08501
    Kim, J. Y., Jeong, H. S., Chung, T., Kim, M., Lee, J. H., Jung, W. H., & Koo, J. S. (2017). The value of Phosphohistone H3 as a proliferation marker for evaluating invasive breast cancers: A comparative study with Ki67. Oncotarget. doi: 10.18632/oncotarget.17775
    Kirschmann, D. A., Lininger, R. A., Gardner, L. M., Seftor, E. A., Odero, V. A., Ainsztein, A. M., . . . Hendrix, M. J. (2000). Down-regulation of HP1Hsalpha expression is associated with the metastatic phenotype in breast cancer. Cancer Res, 60(13), 3359-3363.
    Kulshammer, E., Mundorf, J., Kilinc, M., Frommolt, P., Wagle, P., & Uhlirova, M. (2015). Interplay among Drosophila transcription factors Ets21c, Fos and Ftz-F1 drives JNK-mediated tumor malignancy. Dis Model Mech, 8(10), 1279-1293. doi: 10.1242/dmm.020719
    Lee, Y.-H., Kuo, C.-Y., Stark, J. M., Shih, H.-M., & Ann, D. K. (2013). HP1 promotes tumor suppressor BRCA1 functions during the DNA damage response. Nucleic Acids Research, 41(11), 5784-5798. doi: 10.1093/nar/gkt231
    Lee, Y. H., & Ann, D. K. (2015). Bi-phasic expression of Heterochromatin Protein 1 (HP1) during breast cancer progression: Potential roles of HP1 and chromatin structure in tumorigenesis. J Nat Sci, 1(7), e127.
    Ling, C., & Groop, L. (2009). Epigenetics: A Molecular Link Between Environmental Factors and Type 2 Diabetes. Diabetes, 58(12), 2718-2725. doi: 10.2337/db09-1003
    Liu, L. P., Ni, J. Q., Shi, Y. D., Oakeley, E. J., & Sun, F. L. (2005). Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription. Nat Genet, 37(12), 1361-1366. doi: 10.1038/ng1662
    Mullen, A. R., Wheaton, W. W., Jin, E. S., Chen, P. H., Sullivan, L. B., Cheng, T., . . . DeBerardinis, R. J. (2011). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 481(7381), 385-388. doi: 10.1038/nature10642
    Nicholson, L., Singh, G. K., Osterwalder, T., Roman, G. W., Davis, R. L., & Keshishian, H. (2008). Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics, 178(1), 215-234. doi: 10.1534/genetics.107.081968
    Norwood, L. E., Grade, S. K., Cryderman, D. E., Hines, K. A., Furiasse, N., Toro, R., . . . Wallrath, L. L. (2004). Conserved properties of HP1(Hsalpha). Gene, 336(1), 37-46.
    Pirola, L., Balcerczyk, A., Okabe, J., & El-Osta, A. (2010). Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol, 6(12), 665-675. doi: 10.1038/nrendo.2010.188
    Pomeroy, S. L., Tamayo, P., Gaasenbeek, M., Sturla, L. M., Angelo, M., McLaughlin, M. E., . . . Golub, T. R. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415(6870), 436-442. doi: 10.1038/415436a
    Popova, E. Y., Claxton, D. F., Lukasova, E., Bird, P. I., & Grigoryev, S. A. (2006). Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood. Exp Hematol, 34(4), 453-462. doi: 10.1016/j.exphem.2006.01.003
    Ruiz-Ramirez, A., Chavez-Salgado, M., Peneda-Flores, J. A., Zapata, E., Masso, F., & El-Hafidi, M. (2011). High-sucrose diet increases ROS generation, FFA accumulation, UCP2 level, and proton leak in liver mitochondria. Am J Physiol Endocrinol Metab, 301(6), E1198-1207. doi: 10.1152/ajpendo.00631.2010
    Saksouk, N., Simboeck, E., & Déjardin, J. (2015). Constitutive heterochromatin formation and transcription in mammals. Epigenetics & Chromatin, 8, 3. doi: 10.1186/1756-8935-8-3
    Salvany, L., Requena, D., & Azpiazu, N. (2012). Functional association between eyegone and HP1a mediates wingless transcriptional repression during development. Mol Cell Biol, 32(13), 2407-2415. doi: 10.1128/mcb.06311-11
    Singh, L. P. (2013). Thioredoxin Interacting Protein (TXNIP) and Pathogenesis of Diabetic Retinopathy. Journal of clinical & experimental ophthalmology, 4, 10.4172/2155-9570.1000287. doi: 10.4172/2155-9570.1000287
    Sumiyoshi, M., Sakanaka, M., & Kimura, Y. (2006). Chronic intake of high-fat and high-sucrose diets differentially affects glucose intolerance in mice. J Nutr, 136(3), 582-587.
    Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029-1033. doi: 10.1126/science.1160809
    Varma, S. D., & Chandrasekaran, K. (2015). High sugar-induced repression of antioxidant and anti-apoptotic genes in lens: reversal by pyruvate. Mol Cell Biochem, 403(1-2), 149-158. doi: 10.1007/s11010-015-2345-y
    Warburg, O. (1956). On respiratory impairment in cancer cells. Science, 124(3215), 269-270.
    Wolin, K. Y., Carson, K., & Colditz, G. A. (2010). Obesity and Cancer. The Oncologist, 15(6), 556-565. doi: 10.1634/theoncologist.2009-0285
    Zhang, J., Nuebel, E., Daley, G. Q., Koehler, C. M., & Teitell, M. A. (2012). Metabolic Regulation in Pluripotent Stem Cells during Reprogramming and Self-Renewal. Cell stem cell, 11(5), 589-595. doi: 10.1016/j.stem.2012.10.005
    Zhao, Z. Z., Xin, L. L., Xia, J. H., Yang, S. L., Chen, Y. X., & Li, K. (2015). Long-term High-fat High-sucrose Diet Promotes Enlarged Islets and beta-Cell Damage by Oxidative Stress in Bama Minipigs. Pancreas, 44(6), 888-895. doi: 10.1097/mpa.0000000000000349

    無法下載圖示 校內:2022-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE