| 研究生: |
劉怡萱 Liu, Yi-Hsuan |
|---|---|
| 論文名稱: |
基於區間時間序列的投資組合分配 The Portfolio Allocation based on Interval Time Series |
| 指導教授: |
林良靖
Lin, Liang-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 預期效用理論 、平均數-變異數投資組合 、二元樹 、隨機微分方程 |
| 外文關鍵詞: | binomial tree, expected utility theory, mean-var portfolio model, stochastic differential equations |
| 相關次數: | 點閱:268 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
股票市場上如何分配資產使其達到最佳化報酬,一直是最被關注的議題,研究 上也有許多不同方法,像是由馮·紐曼 (Von Neumann) 和摩根斯坦 (Morgenstern) 提出 並被後人發展的預期效用理論 (expected utility theory),或是馬可維茲 (Markowitz) 提 出的平均數-變異數投資組合模型 (Mean-Variance portfolio model)。一般來說,尋找 最佳化投資策略,通常是以收盤價格去計算,卻忽略了每日股票擁有的最高及最低 價等訊息,故本文的目標是利用收盤價、最高價及最低價去建立模型,用此模型預 測隔日的最高價及最低價,再利用前述兩個決策方法找到最佳投資組合。
The aim of this study is to optimize the trading strategy based on interval time series. We use daily opening price, closing price, the highest price and the lowest price to construct the model. Then, use this model to predict the highest and lowest prices step by step. Assume that the closing price has an uniform distribution with the parameters of upper bound to be the estimated highest price and lower bound to be the estimated lowest price. Finally, the optimal portfolio weights are obtained by using expected utility theory and Mean-Variance portfolio model. In empirical study, we perform the optimization trad- ing strategies of above two decision making methods in three different periods by using the historical observations to estimate the parameters respectively. The results show that the uniform assumption for the closing price have higher profits than the traditional one.
Arroyo, J., González-Rivera, G., and Maté, C. (2010). Forecasting with interval and his- togram data. some financial applications. Handbook of Empirical Economics and Finance, pages 247–280.
Billard, L. and Diday, E. (2000). Regression analysis for interval-valued data. Data Analysis, Classification, and Related Methods. pages 369–374. Berlin: Springer. pp.
Billard, L. and Diday, E. (2002). Symbolic regression analysis. Classification, Clustering and Data Analysis. pages 281–288. Berlin: Springer. pp.
Brito, P. (2007). Modelling and analysing interval data. Advances in Data Analysis. pages 197–208. Berlin: Springer. pp.
Diday, E. and Billard, L. (2006). Symbolic Data Analysis Conceptual Statistics and Data Mining 1st ed. Chichester: Wiley & Sons.
Lin, L.-C. and Sun, L.-H. (2017). Modeling interval time series based on stochastic differential equation. Manuscript.
Neto, E. d. A. L. and de Carvalho, F. d. A. (2008). Centre and range method for fitting a linear regression model to symbolic interval data. Computational Statistics & Data Analysis, 52(3):1500–1515.
Pliska, S. (1997). Introduction to mathematical finance. Oxford: Blackwell publishers. Pun, C. S. and Wong, H. Y. (2015). High-dimensional static and dynamic portfolio selection
problems via l1 minimization. Manuscript.