簡易檢索 / 詳目顯示

研究生: 黎巧郁
Li, Chiao-Yu
論文名稱: 利用陽極氧化鋁模板成長金奈米柱製備有機硫化物之氣體感測器
The fabrication of mercaptan gas sensor utilizing gold nanorod structure via AAO template
指導教授: 洪茂峰
Hong, Mau-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 87
中文關鍵詞: 陽極氧化鋁金奈米柱氣體感測有機硫化物甲基硫醇
外文關鍵詞: AAO, gold nanorod, gas sensor, mercaptan gas
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用陽極氧化鋁(Anodic aluminum oxide, AAO) 模板輔助,進行電化學電鍍金奈米柱,應用於有機硫化物之氣體感測,相較於一般平面金薄膜結構,金奈米柱為一維奈米結構,有較大的比表面積 (Specific Surface Area, SSA),有助於提升氣體感測之靈敏度。
    本實驗利用陽極氧化鋁模板輔助成長金奈米柱,探討金奈米柱成長之均勻性與填孔程度。在室溫下進行電鍍,並於電鍍液中添加3.75 M二甲基亞碸調整其濃稠度,酸鹼值調變以pH 1.33為最佳參數,電鍍工作週期設定為10%時,具有最佳填孔均勻性。接著於45℃下,以4 M氫氧化鈉將模板完全蝕刻,裸露出金奈米柱結構,進而應用於甲基硫醇氣體之感測,當氣體濃度為4 ppm時,靈敏度為 -19.84%,與金薄膜 -1.55%相比,有較佳的靈敏度;並將金奈米柱分別感測1 ppm氬氣和1 ppm硫化氫,確認本實驗甲基硫醇感測器之選擇性。

    This study presents a simple process for producing resistance-based mercaptan gas sensor utilizing gold nanorod structure via AAO template. One-dimensional gold nanorod was prepared using electrodeposition method under alternating bias. It has been found that Au nanoparticles exhibit high catalytic activity towards H2O2. The electrodeposition parameters of pH, duty cycle and DMSO concentration were investigated. The AAO template was removed successfully with sodium hydroxide at 45℃. The current signal showed a concentration-dependent results, when the gold nanorod was exposed to a small concentration of mercaptan gas. And the sensitivity and selectivity of mercaptan gas sensor were shown. Gold nanorod was also characterized by transmission electron microscopy and the phase structure of Au composition was proved by X-ray diffraction.

    摘要 I Abstract II 誌謝 VII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 氣體感測器簡介 2 1-3 奈米材料 4 1-3-1 陣列式奈米柱 5 1-3-2 奈米柱製備 6 1-3-3 奈米柱應用 7 1-4 研究動機 8 第二章 理論基礎 9 2-1 陽極氧化鋁 9 2-1-1 陽極氧化反應 10 2-1-2 陽極氧化鋁形成之化學反應 11 2-1-3 陽極氧化鋁生成機制 12 2-2 模板改質 15 2-2-1 表面改質理論 15 2-2-2 過氧化氫表面改質 (H2O2 modification) 16 2-3 添加劑 18 2-3-1 二甲基亞碸 (DMSO) 18 2-3-2 DMSO特性 19 2-4 脈衝電鍍 20 2-4-1 三極電鍍 (Three - electrode) 20 2-4-2 電鍍裝置 (Electrode Cell) 21 2-5 金-有機硫鍵結特性 23 2-5-1 自我組合單層膜 (Self-assembled Monolayers) 23 2-5-2 自我組合單層膜分類 23 2-5-3 自我組合單層膜特性 24 2-5-4 有機硫醇分子與金表面關係 25 2-6 甲基硫醇 (Methyl Mercaptan) 26 第三章 實驗方法與量測儀器介紹 27 3-1 實驗流程 27 3-1-1 模板製程 29 3-1-2 蒸鍍工作電極 31 3-1-3 阻擋層蝕刻 32 3-1-4 金奈米柱沉積 33 3-1-5 AAO模板蝕刻 34 3-2 實驗藥品與材料 35 3-2-1 模板製程藥品 35 3-2-2 電鍍金奈米柱藥品 35 3-2-3 陽極氧化鋁基板蝕刻藥品 35 3-3 實驗參數 36 3-3-1 模板製程參數 36 3-3-2 金奈米柱電鍍參數調變 36 3-3-3 模板蝕刻參數調變 37 3-3-4 氣體感測參數調變 37 3-4 量測儀器介紹 38 3-4-1 接觸角量測儀 (Contact angle) 38 3-4-2 高解析掃描式電子顯微鏡 (HR-SEM) 39 3-4-3 能量分散式光譜儀 (EDS) 40 3-4-4 多功能X光薄膜繞射儀 (XRD) 41 3-4-5 穿透式電子顯微鏡 (TEM) 44 第四章 結果與討論 46 4-1 實驗架構 46 4-2 陽極氧化鋁模板結構 47 4-3 電鍍金奈米柱 48 4-3-1 過氧化氫(H2O2)影響 48 4-3-2二甲基亞碸(DMSO)影響 49 4-3-3 過氯酸鍍液參數調變 50 4-3-4 硼酸鍍液參數調變 56 4-4 模板蝕刻 61 4-4-1 磷酸溶液參數調變 61 4-4-2 氫氧化鈉溶液參數調變 63 4-5 金奈米柱材料討論 67 4-5-1 XRD分析 67 4-5-2 TEM量測 68 4-6 氣體感測 70 4-6-1 腔體架構 70 4-6-2 氣體濃度換算 71 4-6-3 甲基硫醇感測 72 4-6-4 氬氣感測 74 4-6-5 硫化氫感測 76 4-6-6 氣體感測器之靈敏性與選擇性 79 第五章 結論 81 第六章 未來展望 83 參考文獻 84

    [1] Wagner, R. S., and W. C. Ellis, "Vapor‐liquid‐solid mechanism of single crystal growth, " Applied Physics Letters 4.5: 89-90, 1964.
    [2] Wang, H., Huff, T. B., Zweifel, D. A., He, W., Low, P. S., Wei, A., & Cheng, J. X., "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proceedings of the National Academy of Sciences of the United States of America 102.44: 15752-15756, 2005.
    [3] Keller, F., M. S. Hunter, and D. L. Robinson, "Structural features of oxide coatings on aluminum," Journal of the Electrochemical Society 100.9: 411-419, 1953.
    [4] Li, Y., Meng, G. W., Zhang, L. D., & Phillipp, F., "Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties," Applied Physics Letters 76.15: 2011-2013, 2000.
    [5] Jessensky, O., F. Müller, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied physics letters 72.10: 1173-1175, 1998.
    [6] Li, Feiyue, Lan Zhang, and Robert M. Metzger, "On the growth of highly ordered pores in anodized aluminum oxide," Chemistry of materials 10.9: 2470-2480, 1998.
    [7] Thompson, G. E., G. C. Wood, and J. C. Scully, "Corrosion: aqueous processes and passive films," Treatise on materials science and technology Scully JC 23: 205-329, 1983.
    [8] Ma, Kuixiang, Tai‐Shung Chung, and Robert J. Good, "Surface energy of thermotropic liquid crystalline polyesters and polyesteramide," Journal of Polymer Science Part B Polymer Physics 36.13: 2327-2337, 1998.
    [9] KumaráSarma, Tridib, "Synthesis of Au nanoparticle–conductive polyaniline composite using H2O2 as oxidising as well as reducing agent," Chemical Communications 10: 1048-1049, 2002.

    [10] Cui, Chun-Hua, Hui-Hui Li, and Shu-Hong Yu, "A general approach to electrochemical deposition of high quality free-standing noble metal (Pd, Pt, Au, Ag) sub-micron tubes composed of nanoparticles in polar aprotic solvent," Chemical Communications 46.6: 940-942, 2010.
    [11] Hung, Pin-Kun, Tsung-Hau Lin, and Mau-Phon Houng, "Characteristics of CuInSe2 Nanowire Arrays Electrodeposited into Anodic Alumina Templates with Dimethyl Sulfoxide (DMSO) Additive," Journal of The Electrochemical Society 161.3: D79-D86 , 2014.
    [12] Yang, J. S., Lee, C. C., Yau, S. L., Chang, C. C., Lee, C. C., & Leu, J. M., "Conformation and monolayer assembly structure of a pentiptycene-derived α, ω-alkanedithiol," The Journal of Organic Chemistry 65.3: 871-877, 2000.
    [13] Nuzzo, Ralph G., and David L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society 105.13: 4481-4483, 1983.
    [14] Sellers, H., Ulman, A., Shnidman, Y., & Eilers, J. E., "Structure and binding of alkanethiolates on gold and silver surfaces: implications for self-assembled monolayers," Journal of the American Chemical Society 115.21: 9389-9401, 1993.
    [15] Vericat, C., Vela, M. E., Benitez, G., Carro, P., & Salvarezza, R. C., "Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system," Chemical Society Reviews 39.5: 1805-1834, 2010.
    [16] Atkins, Peter W., and Loretta Jones, "Chemistry Principles: The Quest for Insight,": 285-287, 1999.
    [17] 汪建民,“材料分析”,中國材料科學學會, 新竹, 1998年。
    [18] Fathy, Naglaa, Ryohei Kobayashi, and Masaya Ichimura, "Preparation of ZnS thin films by the pulsed electrochemical deposition," Materials Science and Engineering: B 107.3: 271-276, 2004.
    [19] 許樹恩,吳泰伯,“光繞射原理與材料結構分析”,材料科學叢書,Chap, 20: 532-533,1996年。
    [20] 林麗娟,“X 光繞射原理及其應用”,X光材料分析技術與應用專題,1994年。
    [21] 陳力俊等著,“材料電子顯微鏡學”,行政院國科會精密儀器發展中心,p.1~20、p.49~50、p.251~285 ,1990年。
    [22] Wan, Jun, Junjie Ding, and Meng Wang, "Preparation of gold nanotube by direct electrodeposition for biosensors," Journal of Cluster Science 21.4: 669-677, 2010.
    [23] 潘善林等著,“模板合成法製備金鈉米線的研究”,高等學校化學學報, 20.10: 1622-1624,1999年。
    [24] Wang, Qingping, Fanfei Min, and Jinbo Zhu, "Preparation of gold nanowires and its application in glucose biosensing," Materials Letters 91: 9-1, 2013.
    [25] Wang, Z., Y-K. Su, and H-L. Li, "AFM study of gold nanowire array electrodeposited within anodic aluminum oxide template," Applied Physics A 74.4: 563-565, 2002.
    [26] Guduru, S., Singh, V. P., Rajaputra, S., Mishra, S., Mangu, R., & Omer, I. S., "Characteristics of gold/cadmium sulfide nanowire Schottky diodes," Thin Solid Films 518.7: 1809-1814, 2010.
    [27] Sadeghian, Ramin Banan, and Mojtaba Kahrizi, "A low pressure gas ionization sensor using freestanding gold nanowires," in Proc. IEEE ISlE, Vigo, Spain, pp. 1387-1390, June 2007.

    [28] Taşaltın, N., Öztürk, S., Kılınç, N., Yüzer, H., & Öztürk, Z. Z., "Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions," Applied Physics A 95.3: 781-787, 2009.
    [29] Dou, R., and B. Derby, "The strength of gold nanowire forests," Scripta materialia 59.2: 151-154, 2008.
    [30] Xu, Q., Meng, G., Han, F., Zhao, X., Kong, M., & Zhu, X., "Controlled fabrication of gold and polypyrrole nanowires with straight and branched morphologies via porous alumina template-assisted approach," Materials Letters 63.16: 1431-1434, 2009.

    無法下載圖示 校內:2021-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE