簡易檢索 / 詳目顯示

研究生: 黃瀞瑩
Huang, Jing-ying
論文名稱: 以Fe2O3/SiO2吸收劑高溫去除硫化氫及硫化羰之研究
High-Temperature Sorption of Hydrogen Sulfide and Carbonyl Sulfide by Fe2O3/SiO2
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 200
中文關鍵詞: 氣化氣硫化氫除硫吸收劑金屬氧化物硫化羰
外文關鍵詞: metal oxides, sulfur removal, syngas, hydrogen sulfide, carbonyl sulfide, sorbent
相關次數: 點閱:97下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著世界人口的增加與科技的需求,石油及天然氣等能源短缺,導致油價不停地上漲,為了因應多元化能源利用,未來在燃煤發電之使用將明顯的上升。煤炭氣化複循環發電技術(IGCC)是以煤炭作為能源,能夠降低污染物之釋放,以達到煤炭高效率、清潔之使用,未來將成為發電技術主流之ㄧ。現行商業運轉之大型煤炭氣化複循環發電機組(IGCC)皆使用溼式商業化之除硫程序,但由於用水量大,使得系統熱效率降低,為解決此問題以降低發電及環保成本,利用高溫下乾式除硫方法將是未來的趨勢。
    本研究以自行自備之高表面積Fe2O3/SiO2吸收劑吸收處理硫化氫/硫化羰,研究成果分成下列幾點探討:
    1. 負載於不同載體之三氧化二鐵吸收劑之脫硫效能以負載於SiO2 之吸收劑脫硫效果較好,負載於ZrO2及γ-Al2O3載體上之三氧化二鐵吸收劑脫硫效果較差。
    2. 經由一系列的操作溫度對於單獨去除硫化氫及同時去除硫化氫、硫化羰之影響實驗可以發現,最佳的操作溫度應為500℃。
    3. 觀察改變操作參數對於Fe2O3/SiO2吸收劑除硫效能之影響,發現一氧化碳濃度增加、氫氣濃度減小會增加吸收劑利用率,這可能和
    Water-shift reaction有關;而空間流速在3,000~18,000 mL·hr-1·g-1之間時脫硫容量受空間流速之影響並不顯著;硫化氫及硫化羰進流濃度對吸收劑利用率無顯著之影響。
    4. 由氧化/還原氣氛之熱重分析觀察Fe2O3/SiO2吸收劑的重量變化,還原氣氛下,Fe2O3於高溫下會被還原為低氧化數的鐵氧化物;氧化氣氛下,發現有部分脫硫後之產物FeS會先轉為FeSO4,之後才繼續氧化成為Fe2O3。
    5. 由動力研究發現,第一型衰退模式所求得之活化能為103 kJ/mol,碰撞因子A = 1.4 × 1017 , 第二型衰退模式所求得之活化能為65.5 kJ/mol,碰撞因子A = 4.3 × 1014。

    With the increase of the population and demands for better life in the world, the energy, such as petroleum and natural gas, are exhausted and their prices are booming. For the need of diversified clean energy, the use of
    coal-burning power will increase obviously in the future. Integrated Gasification Combined Cycle (IGCC) is one of the ideal technologies, which mainly uses coal to generate power. It can reduce the emissions and improve the efficiency of coal-burning. This technology will become the main stream of power supply in the future. Nowadays, all commercial IGCC power plants use wet desulfurization processes to remove H2S from hot syngas, but they have to use large amount of water and, thus, decrease the
    thermal efficiency of the system. In order to solve this problem, the high temperature desulfurization by dry techniques is a trend for related fields.
    Desulfurization of hot coal gas using homemade Fe2O3/SiO2 sorbent in a fixed bed reactor was conducted in this study. The discussion of results can be divided into five major parts.
    1. The Fe2O3 sorbent supported on SiO2 exhibits higher sorbent utilization than the Fe2O3 sorbents supported on γ-Al2O3 and ZrO2.
    2. The operating temperatures around 500℃ is optimal for the Fe2O3/SiO2 sorbent.
    3. The effects of operating parameters, such as space velocity and inlet concentrations of CO, H2, H2S and COS, on the removal of H2S and COS were performed. Results indicate that the breakthrough time increases with the CO concentration and decreases with the H2 concentration. Thiscan be explained through the water-shift reaction. Space velocity between 3,000~18,000 mL·hr-1·g-1, H2S concentration and COS concentration, however, maintain nearly constant sorbent utilization in the operation conditions.
    4. Under reduction conditions, Fe2O3 sorbent will be reduced to low-activity iron oxides. Under oxidation conditions, the sulfurated ferrite sorbent will be oxidized to FeSO4 first. It will be further oxidized to the ferrite sorbent.
    5. In the operating range of this study, it can be found that the activation energy, Ea, is 103 kJ/mol and the frequency factor, A, is 1.4 × 1017 for type I model. The activation energy, Ea, is 65.5 kJ/mol and the frequency
    factor, A, is 4.3 × 1014 for type II model.

    摘要....................................................................................................................I Abstract............................................................................................................ III 目錄.................................................................................................................. A 表目錄...............................................................................................................E 圖目錄.............................................................................................................. G 第一章 前言..................................................................................................... 1 1-1 研究動機............................................................................................. 1 1-2 研究內容與架構................................................................................. 3 第二章 文獻回顧............................................................................................. 5 2-1 IGCC 發電簡介................................................................................... 5 2-2 硫化氫及硫化羰之特性..................................................................... 8 2-2.1 硫化氫之來源......................................................................... 8 2-2.2 硫化氫之性質......................................................................... 8 2-2.3 硫化氫之危害....................................................................... 10 2-2.4 硫化羰之性質....................................................................... 12 2-2.5 硫化羰之危害....................................................................... 14 2-3 硫化氫及硫化羰之控制技術........................................................... 15 2-3.1 濕式除硫技術....................................................................... 15 2-3.2 乾式除硫技術....................................................................... 19 2-4 吸收劑特性....................................................................................... 25 2-5 吸收劑之選擇................................................................................... 28 2-5.1 單一金屬氧化物吸收劑....................................................... 29 2-5.2 混合型吸收劑....................................................................... 31 2-5.3 載體型吸收劑....................................................................... 33 2-6 氧化鐵之簡介................................................................................... 34 2-7 吸收劑活性衰退............................................................................... 38 2-8 硫化氫及硫化羰轉化之操作參數................................................... 40 2-9 吸收劑脫硫反應動力之探討........................................................... 43 2-9.1 衰退模式............................................................................... 44 2-9.2 Arrhenius 表示式................................................................... 47 第三章 研究方法與實驗器材....................................................................... 48 3-1 研究方法........................................................................................... 48 3-1.1 實驗規劃............................................................................... 48 3-1.2 實驗步驟與方法................................................................... 49 3-2 實驗器材........................................................................................... 52 3-2.1 實驗系統裝置....................................................................... 52 3-2.2 吸收劑與氣體....................................................................... 60 3-3 預備實驗........................................................................................... 62 3-3.1 吸收劑之製備....................................................................... 62 3-3.2 檢量線製作........................................................................... 66 3-3.3 空白實驗............................................................................... 68 第四章 結果與討論....................................................................................... 69 4-1 自製吸收劑之特性分析................................................................... 70 4-1.1 不同載體之氧化鐵吸收劑脫硫性能比較........................... 70 4-1.2 不同活性金屬吸收劑脫硫性能之比較............................... 76 4-1.3 不同鍛燒溫度及鍛燒時間對10%Fe2O3/SiO2 吸收劑晶相之 影響....................................................................................... 80 4-1.4 不同氧化鐵含量之吸收劑脫硫性能之比較....................... 90 4-2 脱硫-再生循環對吸收容量影響之探討......................................... 95 4-2.1 吸收劑再生之程溫脱附試驗............................................... 95 4-2.2 10% Fe2O3/SiO2 吸收劑脫硫-再生循環測試..................... 97 4-2.3 硫回收率分析..................................................................... 102 4-2.4 XRD 分析............................................................................. 104 4-3 操作參數對以10% Fe2O3/SiO2 單獨去除硫化氫之影響............ 108 4-3.1 不同操作溫度對以10% Fe2O3/SiO2 單獨去除硫化氫之影響 ............................................................................................. 108 4-3.2 CO 濃度、H2 濃度、H2S 濃度對以10% Fe2O3/SiO2 單獨去 除硫化氫之影響................................................................. 110 4-3.3 空間流速對以10% Fe2O3/SiO2 單獨去除硫化氫之影響. 119 4-4 操作參數對以10% Fe2O3/SiO2 同時去除硫化氫及硫化羰之影響 ........................................................................................................ 121 4-4.1 不同操作溫度對以10% Fe2O3/SiO2 同時去除硫化氫及硫化 羰之影響............................................................................. 121 4-4.2 CO 濃度、H2 濃度、H2S 及COS 濃度對以10% Fe2O3/SiO2 同 時去除硫化氫及硫化羰之影響......................................... 126 4-4.3 空間流速對以10%Fe2O3/SiO2 同時去除硫化氫及硫化羰之 影響..................................................................................... 139 4-5 熱重分析......................................................................................... 142 4-5.1 還原氣氛下之熱重分析..................................................... 142 4-5.2 氧化氣氛下之熱重分析..................................................... 146 4-6 吸收劑脫硫前後之分析................................................................. 149 4-6.1 SEM 分析............................................................................. 149 4-6.2 SEM-EDS 分析.................................................................... 155 4-6.3 Mapping 分析....................................................................... 159 4-6.4 BET 表面積與孔洞特性..................................................... 165 4-7 脱硫反應動力模式模擬................................................................. 169 4-7.1 第一型之衰退模式............................................................. 169 4-7.2 第二型之衰退模式............................................................. 173 4-8 以具高溫除塵潛力之Fe2O3/SiO2 吸收劑進行高溫去除硫化氫及硫 化羰................................................................................................ 176 4-8.1 不同吸收劑之硬度測試..................................................... 176 4-8.2 Fe2O3/SiO2 及MnO/SiO2 吸收劑單獨去除硫化羰測試.... 177 4-8.3 以不同表面積之SiO2 為載體之氧化鐵吸收劑金屬回收率 分析..................................................................................... 179 4-8.4 具除塵潛力之Fe2O3/SiO2 吸收劑脫硫再生循環測試..... 182 4-8.5 結論..................................................................................... 184 4-9 綜合比較......................................................................................... 186 第五章 結論與建議..................................................................................... 191 5.1 結論................................................................................................. 191 5-2 建議.................................................................................................. 194 參考文獻....................................................................................................... 195

    Abbasian, J., Slimane, R.B., “A regenerable copper-based sorbent for H2S removal coal gases”, Ind Eng Chem Res, 1998, 37, 2775-2782.
    Alonso L., Palacios J.M., and Moliner R., “The Performance of Some ZnO-Based Regenerable Sorbents in Hot Coal Gas Desulfurization Long-Tert Tests Using Graphite as a Pore-Modifier Additive”, Fuel & Energy, 2001, 15, 1396-1402.
    Alonso, L., Palacios, J.M., “Performance and Recovering of a Zn-doped Manganese Oxide as a Regenerable Sorbent for Hot Coal Gas Desulfurization”, Energy & Fuel, 2002, 16(6), 1550-1556.
    Atimtay, A. T., “Cleaner Energy Production with Integrated Gasification Combined Cycle Systems and Use of Metal Oxide Sorbents for H2S Cleanup from Coal Gas”, Clean Products and Processes, 2001, 197-208.
    Ayala, R. E. and Marsh, D. W., “ Characterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processed“, Ind. Eng. Chem. Res. 1991,30, 55-60
    Bakker, W. J. W., Kapteijn, F., Moulijn, J. A., “A High Capacity Manganese-based Sorbent for Regenerative High Temperature Desulfurization with Direct Sulfur Production Conceptual Process Application to Coal Gas Cleaning”, Chemical Engineering Journal, 2003, 96, 223-235.
    Bhatia, S. P., “Organosulfur Emissions from Industrial Sources., In Sulphur in the Environment; Nriagu, J. O., Ed.; Wiley;New York, 1978; Part I, p.51-83.
    CHEMFATE., “Syracuse Research Corporation's Environmental Fate Data Bases”, Syracuse Research Corporation, Syracuse, NY., 1994.
    Cuong, P. H., Estournes, C., Heinrich, B., Ledoux, M. J., “High Temperature H2S Removal over High Specific Surface Area β-SiC Supported Iron Oxide Sorbent-part 2 Perparation and Characterization”, J. Chem. Soc. Faraday Trans., 1998, 94, 443-450.
    Focht, G.D., Ranade, P.V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite: Reduction and Sulfidation Kinetics”, Chem Eng Sci, 1988, 43(11), 3005-3013.

    Focht, G.D., Ranade, P.V., Harrison, D. P., “High Temperature Desulfurization Using Zinc Ferrite:Solid Structural Property Changes”, Chem Eng Sci, 1989, 44(2), 215-224.
    Garcý´a, E., Cilleruelo, C., Ibarra, J.,*, Miguel Pineda, and Jose´ M. Palacios,” Kinetic Study of High-Temperature Removal of H2S by Novel Metal Oxide Sorbents”, Ind. Eng. Chem. Res. 1997, 36, 846-853.
    GE Energy, “GE’s Gasification & IGCC Technology Update – a Clean Coal Solution “, Proceeded in APEC Clean Coal Conference, Lampang, Thailand, February 22-25, 2006.
    Gosselin, R.E.; Smith, R.P.; Hodge, H. C., “Clinical Toxicology of Commercial Products”, 5th ed.; Williams and Wilkins: Baltimore, MD, 1984; 111-201.
    Houriet, R.; Louvier, D., “Emission of Toxic Sulfur Gases from Polymers Coming in Contact with Food Products and with Infants”, Analysis 1999, 27, 369-372.
    HSDB., Hazardous Substances Data Bank.,“MEDLARS Online Information Retrieval System”, National Library of Medicine. 1994.
    Hugod, C., “Myocardial Morphology in Rabits Exposed to Various Gas-Phase Constituents of Tobacco SmokesAn Ultrastructural Study”, Atherosclerosis 1981, 40, 181-190.
    Jun, H. K., Lee, T. J., Ryu, S. O., Kim, J. C., “A Study of Zn—Ti-based H2S Removal Sorbents Promoted with Cobalt Oxides”, Ind. Eng. Chem. Res., 2001, 40(16), 3547-3556.
    Jun, H. K., Lee, T. J., Kim, J. C., “Role of Iron Oxide in the Promotion of Zn-Ti-Based Desulfurization Sorbents during Regeneration at Middle Temperatures”, Ind. Eng. Chem. Res. 2002, 41, 4733-4738.
    Kamstrup, O.; Hugod, C., “Exposure of rabbits to 50 ppm Carbonyl Syulfide- Biochemical and Histomorphological Study”, Arch. Occup. Environ. Health, 1979, 44, 109-116.
    Kamstrup, O, Hugod, C., Larsen, E., “Measurements of Low Concentrations of Carbonyl Sulfide”, Beitr. Tabakforsch., 1981, 11,33.
    Karayilan, D., Dogu, G., Yasyerli, S., Dogu, G., “Mn-Cu and Mn-Cu-V Mixed-Oxide Regenerable Sorbents for Hot Gas Desulfurization”, American Chemical Society, Accepted November 12, 2004.
    Kobayashi, M., Shirai, H.and Nunokawa, M., ” Estimation of Multiple-Cycle Desulfurization Performance for Extremely Low-Concentration Sulfur Removal with Sorbent Containing Zinc Ferrite-Silicon Dioxide Composite Powder”, Energy& Fuels 2002, 16, 1378-1386.
    Kobayashi, M., “Reduction and Sulfidation Kinetics of Cerium Oxide and Cu-Modified Cerium Oxide”, Ind. Eng. Chem. Res. 2002, 41, 3115-3123.
    Kobayashi, M., Shirai, H.and Nunokawa, M., ”Measurements of Sulfur Capacity Proportional to Zinc Sulfidation on Sorbent Containing Zinc Ferrite-Silica Composite Powder in Pressurized Coal Gas”, Ind. Eng. Chem. Res. 2002, 41, 2903-2909.
    Konttinen, J., Mojtahedi, W., “Gasifier Gas Desulfurization at High Temperature and Pressure”, Repr Kemia-Kemi, 20, 847-851, 1993.
    Kyotani, T., Kawashima, H., Tomita, A., “High Temperature Desulfurization Reaction with Cu-Containing Sorbents”, Environ. Sci. Technol., 1989, 23(2), 218-223.
    Lew, S., K. Jothimurugesan, M.Flytzani-Stephanopoulo,“High Temperature H2S Removal from Fuel Gases by Regenerable Zinc Oxide- Titanate Dioxide Sorbents”, Ind.Eng. Chem.Res., 1992, 31, 1890-1899.
    Li, Z., Flytzani-Stephanopoulos, M., “Cu-Cr-O and Cu-Ce-O Regenerable Oxide Sorbents for Hot Gas Desulfurization”, Ind Eng Chem Res, 1997, 36(1), 187-196.
    Mojtahedi, W., Abbasian, J., “H2S Removal from Coal Gas at Elevated Temperature and Pressure in Fluidized Bed with Zinc Titanate Sorbents, Part 1:cyclic tests”, Energy Fuels, 1995, 9:782-801.
    MSDS, http://www.iosh.gov.tw/frame.htm.
    Munteanu G., Ilieva L., Andreeva D., “TPR data regarding the effect of sulfur on the reducibility of γ– Fe2O3”, Thermochim. Acta 291, 1997, 329, 157-162.
    Nagl, G., “Controlling H2S emission”, Chemical Engineering, 1997, 125-131.
    Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., “High Temperature Sulfidation -Regeneration of CuO-Al2O3 Sorbent”, Ind. Eng. Chem. Res., 1989, 28, 931-940.
    Novochinskii, I.I., Song, C.S., Ma, S.L., Liu, X.S., Shore, L.R., Lampert, J.D., and Farrauto, R.J., ”Low-Temperature H2S Removal from Steam-Containing Gas Mixtures with ZnO for Fuel Cell Application. 1. ZnO Particles and Extrudates”, Energy & Fuels 2004, 18, 576-583.
    Pineau, A., Kanari, N., Gaballah, l., “Kinetics of reduction of iron oxides by H2 Part I: Low temperature reduction of hematite”, thermochimica acta. 447, 2006, 89-100.
    Pineda, M., Palacios, J.M., Cilleruelo, C., Garcia, E., Ibarra, J.V., “Characterization of Zinc Oxide and Zinc Ferrite Doped with Ti or Cu as Sorbents for Hot Gas Desulfurization”, Appl Surf Sci, 1997, 119-10.
    Pineda, M., Fierro, J.L.G., Palacios, J.M., “Kinetic Behaviour and Reactivity of Zinc Ferrites for Hot Gas Desulphurization”, Journal of Materials Science, 1995, 30 : 6171-6178.
    Poston, J.A., “A Reduction in the Spalling of Zinc Titanate Desulfurization Sorbents through Addition of Lanthanum Oxide”, Ind Eng Chem Res, 1996, 35(3), 875-882.
    「POWDER DIFFRATION FILE」,International Center for Diffration Data, 2004, “http://cdnet.lib.ncku.edu.tw/doc/pdf.htm”.
    Ranade, P.V.; Harrison, D.P., “The variable property grain model applied to the ZnO-H2S reaction”, Chem. Eng. Sci., 1981, 36, 1079-1090.
    Sa, L.N.; Focht, G.D.; Ranade, P.V.; Harrison, D.P.,“High-temperature desulfurization using zinc ferrite : solid structural property changes”, Chem. Eng. Sci., 1989, 2, 215-224.
    Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y., “Reactivity and Durability of Iron Oxide High Temperature Desulfurization Sorbents”, Energy & Fuels 1993, 7, 632-638
    Sasaoka, E., Taniguchi, K., Uddin, M.A., Hirano, S., Kasaoka, S., Sakata, Y.,“Characterization of reaction between ZnO and COS”, Ind. Eng. Chem. Res., 1996, 35, 2389-2394.
    Schwertman, U. and Taylor, R.M. ”Iron Oxides,” In:Minerals in Soil Environments, Dixon, J. B., Weed S. B., (ed.), 2nd ed., Soil Sci. Soc. Am. J., Medison, Wisconsin, USA,1989, p.379-428.
    Schwertmann, U. and Cornell, R.M. Iron oxides in the laboratory. Wiley-VCH publication. 2000.
    Schaack, J. P., Chan, F., ”H2S Scavenginh-1”, Oil & Gas Journal, 1989, 125-131.
    Simbeck, D.R., Dickenson, R.L., and Oliver, E.D, “Coal Gasification Systems: a Guide to Status. Application and Economics”, AP-3109, Prepared by Synthetic Fuel Associates, Inc. for Electric Power Research Institute: Palo Alto, California, 1983.
    Svoronos P.D.N. and Bruno T.J., “Carbonyl Sulfide: A Review of Its Chemistry and Properties”, Ind. Eng. Chem. Res. 2002, 41, 5321-5336.
    Swisher, J.H., Yang, J., Gupta, R.P., “Attirtion-resistant Zinc Titanate Sorbent for Sulfur”, Ind. Eng. Chem. Res., 1995, 34:4463-4471.
    Tamhankar, S.S.; Hasatani, M.; Wen, C.Y., “Kinetic studies on the reactions involved in the hot gas desulfurization”, Chem. Eng. Sci., 1981, 36, 1181-1191.
    The Matheson Company Inc. “ Matheson Gas Data Book 4th ed.”, East Rutherford, N.J., 1966; 97-100.
    U.S. Environmental protection agency, “Chemical summary for carbonyl sulfide prepared by office of pollution prevention and toxics”, EPA 749-F-94-009a, 1994.
    Van der Ham, A. G. J., Vanderbosch, R. H., Prins, W., “Survey of Desulfurization Processes for Coal Gas” In:Atimtay, A. A., Harrison, D. P.(eds), “Desulfurization of Hot Coal Gas”, NATO ASI Ser 1996, 42, 117-136.
    Verschueren, K. “Carbonyl sulfide. In : Handbook of Environmental Data on Organic Chemicals, Second Edition”, Van Nostrand Reinhold Co., New York, 1983, 1103-1108.
    Wakker, J.P., Gerritsen, A.W., Moulijn, J.A., “High temperature H2S and COS removal with MnO and FeO on γ-Al2O3 acceptors”,Ind. Eng. Chem. Res., 1993, 32,139-149.
    Westmoreland, P.R., Harrison, D.P., “Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gasses”, Envi. Sci. &Tech., 1976, 10(7), 659-661.
    Zaho, J., Huang,J, Zhang, J.,Wang, Y., “Influence of Fly Ash on High Temperature Desulfurization Using Iron Oxide Sorbent”, Energy & Fuel, 2002, 16(6), 1585-1590.
    王志成、李福文,「硫化氫新處理技術:SULFA CHECK與現行方法之比較」,工業污染防治,第30期,1989,197-202
    中國鋼鐵股份有限公司,「能源密集產業採用淨煤發電技術應用規劃計劃」,經濟部能源委員會,2000。
    朱信、曾明宗,「煤炭企劃複循環發電機組可行性之研究」,工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計畫期末報告,1991,p.26-29。
    林曉菁,「以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究」,國立成功大學環境工程學系碩士論文,1996。
    林曉萍,「以重金屬廢水污泥經高溫合成之鐵氧磁體高溫去除H2S之吸收特性」,國立成功大學環境工程學系研究所,碩士論文,2006。
    柯子星,「以紅壤在高溫下去除煤炭氣化氣中硫化氫之研究」,國立成功大學環境工程學系,博士論文,2005。
    莊隆凱,「以Mn2O3/γ-Al2O3吸著劑高溫去除硫化氫之研究」,國立成功大學環境工程學系研究所,碩士論文,2003。
    徐恆文,「煤炭氣化技術發展趨勢」,燃煤新技術研討會,2001。
    望熙榮(譯),Cooper, C. D., Alley, F. C.,「空氣污染防治」,中央圖書,1998。
    國立成功大學西文資料庫,理工學科資料庫,參考工具書型,「POWDER DIFFRATION FILE」,International Cente r for Diffration Data出版,2004,http://cdnet.lib.ncku.edu.tw/doc/pdf.htm
    張翰青,「以重金屬廢水污泥產生之鐵氧磁體高溫去除H2S之吸收特性」,國立成功大學環境工程學系研究所,碩士論文,2005。
    黃戶慶,「氧化鐵覆膜濾砂吸附處理水中As(V)、HA 之研究」,輔英科技大學環境工程與科學系研究所,碩士論文,2005。
    劉雅菁,「以ZnMn2O4/SiO2吸收劑高溫去除硫化氫之研究」,國立成功大學環境工程學系研究所,碩士論文,2004。
    劉陽秋,「燒煤發電之先進技術」,台電工程月刊,第571期1-8,1995。
    鐘文清,「IGCC發電方式簡介」,技術與訓練第23卷,第6期, p.127~133,1998。

    下載圖示 校內:立即公開
    校外:2007-08-02公開
    QR CODE