簡易檢索 / 詳目顯示

研究生: 宋旗桂
Sung, Chi-Kuen
論文名稱: 應用歪斜光線追蹤法及近軸光線追蹤法於照相機校正
Camera Calibration Based on Skew Ray-Tracing and Paraxial Skew Ray-Tracing
指導教授: 林昌進
Lin, Psang Dain
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 127
中文關鍵詞: 近軸光線追蹤歪斜光線追蹤針孔成像模型Snell’s Law照相機校正
外文關鍵詞: Skew Raytracing, Pinhole Model, Snell’s law, Paraxial Raytracing, Camera Calibration
相關次數: 點閱:84下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 照相機校正即以物體二維影像來重建其三維形貌的首要步驟,它是用以定義世界座標系與影像座標系間幾何關係的重要技術。然而幾乎所有的校正法皆以針孔成像理論來對照相機的成像進行建模,意即忽略了鏡頭中的所有光學元件,而僅理想地以透視投影法做為照相機成像上的假設。雖然傳統針孔成像模型照相機校正法的數學模型較為簡單且易於使用,但僅能對照相機的5個內部參數和6個外部參數完成校正,且在視覺量測的應用上精度與範圍皆因此而受限。本論文介紹了兩種新的照相機校正方法:

    1) 歪斜光線成像模型照相機校正法:以Snell’s Law為基礎,嚴僅地描述歪斜光線在照相機系統中的光線路徑,因此避免了針孔成像模型所引起的成像誤差。其數學模型雖較為複雜,但也因此提高了照相機參數(內、外部參數及各透鏡位姿參數)在視覺量測應用上的精度與範圍。

    2) 近軸光線成像模型照相機校正法:將歪斜光線追蹤法的推導結果,實施一階泰勒級數展開運算,以近軸光線與軸光線間的光線差,完成照相機成像上的建模。此方法不同於傳統必須對校正點聚焦與取像,而使用可決定初始光線位置與方向的光源系統對照相機參數進行校正。但由於假設各透鏡皆正確地延著光軸整齊排列,相較於歪斜光線成像模型照相機校正法而言,除了對照相機的內、外部參數進行校正外,僅各透鏡在光軸上的位置參數完成校正。

    由於立體視覺量測的精度與待測區和校正區兩者間的位置有關,本研究則針對以上三種照相機校正法所獲得的照相機參數進行光線追蹤實驗。實驗結果顯示,平均讀值誤差將隨量測點與校正區間的距離而增加,即當待測區離開校正區時,則平均讀值誤差將明顯偏高,且由觀察中發現傳統針孔成像模型照相機校正法的平均讀值誤差量最大。更進一步發現,針孔成像模型照相機校正法提供了不合理的參數校正值,且照相機參數的校正結果對校正點的使用亦十分敏感。

    Three-dimensional (3D) model construction from two-dimensional (2D) images is an effective method of 3D modeling. To determine the 3D objects, camera calibration is a crucial step to resolve the relationship between the 3D world coordinates and their corresponding image coordinates. Nearly all camera calibration method uses the pinhole model, which is a perspective projection algorithm using geometrical approximations for the multiple optical elements in a camera system. Therefore, the traditional pinhole model camera calibration method is methodologically easy to use and can only calibrate five intrinsic parameters and six extrinsic parameters but suffers from accuracy problems. We introduce two novel methods for camera calibration in this dissertation:

    1) Snell model camera calibration method: Based on an analytic geometrical version of Snell’s law, this model rigorously describes the behavior of a skew ray crossing the camera system, hence avoids many of the errors inherent in the pinhole model. Although this model is mathematically most complex, it promotes the camera parameters (five intrinsic parameters, six extrinsic parameters and six lens position parameters) to the higher accuracy levels on the vision measurement, and to be usable for the wider range of conditions theoretically.

    2) Paraxial model camera calibration method: We use the first order Taylor series expansion of Snell’s laws to acquire the differential ray (between the axis ray and paraxial ray) for modeling the imaging of a camera and then apply it to the camera calibration. A laser/pinhole assembly is used to experiment with this method. In contrast to the original camera calibration device, it is unnecessary for the laser/pinhole assembly to focus and image the calibration point. This allows allow quick determination of originating at point and traveling along unit directional vector of the source ray. In contrast to the Snell model, the paraxial model offers analytical governing equations, but can only calibrate one position parameter since it assumes that all elements are located without tilt along the optical axis.

    However, the accuracy of such calibration is known in general to be sensitive to the distance from camera to observed object. Thus, we apply these three methods respectively on the camera calibration experiment by ray-tracing. Experimentation exhibited the average error increases for ranges away from the calibrated range, and the error increases more rapidly when the distance of calibrated range and the measured range increases. Consequently, the average error by pinhole method is greatest. Moreover, the pinhole model provided the unreasonable calibration values and calibration values are very sensitive to calibration points.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XII 中文符號說明 XIII 英文符號說明 XV 第一章 緒論 1 第二章 文獻回顧 3 2.1 幾何光學基本定理 3 2.2 單色像差 5 2.3 照相機校正 9 2.4 齊次座標轉換 10 2.5 歪斜光線追蹤 15 第三章 歪斜光線追蹤法 19 3.1 旋轉曲面參數式 19 3.2 幾何光學的折射與反射 22 3.3 平面光學介面歪斜光線追蹤分析 26 3.4 球面光學介面歪斜光線追蹤分析 29 3.5 小結 31 第四章 歪斜光線成像模型照相機校正 32 4.1 歪斜光線照相機成像模型 32 4.2 介面座標系的位姿矩陣 34 4.3照相機系統中各部參數的靈敏度分析 39 4.3.1 內部參數對系統成像的靈敏度分析 39 4.3.2 外部參數對系統成像的靈敏度分析 39 4.3.3 透鏡位姿參數對系統成像的靈敏度分析 40 4.4 照相機校正 44 4.5 小結 46 第五章 近軸光線追蹤法 47 5.1 歪斜光線追蹤法之一階泰勒級數展開 47 5.2 直線傳播矩陣 49 5.3 折(反)射矩陣 50 5.3.1 平面光學介面 51 5.3.2 球面光學介面 54 5.4 近軸光線追蹤法於3D光學系統之應用 63 5.5 近軸光線追蹤法於投影機系統的建模與分析 66 5.6 小結 70 第六章 近軸光線成像模型照相機校正 71 6.1 光學介面間之近軸光線追蹤 71 6.1.1 直線傳播矩陣 73 6.1.2 折射矩陣 73 6.2 近軸光線照相機成像模型 76 6.3 照相機各校正參數的靈敏度分析 79 6.3.1 外部參數對系統成像的靈敏度分析 79 6.3.2 透鏡位置參數對系統成像的靈敏度分析 80 6.3.3 內部參數對系統成像的靈敏度分析 81 6.4 照相機校正 82 6.5 小結 84 第七章 照相機校正實驗與比較 85 7.1 實驗設備 85 7.2 傳統針孔成像模型照相機校正實驗 89 7.3 歪斜光線成像模型照相機校正實驗 90 7.4 近軸光線成像模型照相機校正實驗 93 7.5照相機參數應用於光線追蹤實驗 96 7.6 實驗結果與討論 98 7.7 小結 99 第八章 結論與未來展望 101 參考文獻 105 附錄A 物理量λi數學式及四種座標系間的位姿轉換矩陣 111 附錄B 平面及球面介面所組合之九種透鏡的幾何關係 113 附錄C 傳統針孔成像模型照相機校正法 115 C.1 針孔成像之照相機光學建模 115 C.1.1 照相機座標系與影像座標系間之座標轉換 115 C.1.2 世界座標系與照相機座標系間之座標轉換 117 C.1.3 世界座標系至影像座標系間之座標轉換 118 C.2 照相機校正 119 C.2.1 照相機內部參數 120 C.2.2 照相機外部參數 123 C.3 小結 124 著作 125 自述 127

    1. A. Nussbaum and R. A. Phillips, Contemporary Optics for Scientists and Engineers, Prentice-Hall, Englewood Cliffs, NJ, 1976.
    2. W. Brouwer, Matrix Method in Optical Instrument Design, Benjamin, New York, 1964.
    3. J. R. Meyer-Arendt, Introduction to Classical and Modern Optics, Prentice-Hall, Englewood Cliffs, NJ, 1972.
    4. G. W. Fowles, Introduction to Modern Optics, Holt, Rinehat & Winston, New York, 1975.
    5. T. T. Liao and P. D. Lin, "Analysis of Optical Elements with Flat Boundary Surfaces," Appl. Opt., 42 (7) (2003) pp. 1191-1202.
    6. P. D. Lin and C. H. Lu, "Analysis and Design of Optical System by Use of Sensitivity Analysis of Skew Ray Tracing," Appl. Opt., 43 (4) (2004) pp. 796-807.
    7. Chi-Kuen Sung, Psang Dain Lin, "Skew Ray Tracing and Sensitivity Analysis of Paraboloidal Optical Boundary Surfaces," Materials Science Forum, Vols. 505-507 (2006) pp. 613-618,.
    8. P. D. Lin and Chi-Kuen Sung, "Matrix-Based Paraxial Skew Raytracing in 3D Systems with Non-Coplanar Optical Axis," OPTIK - International Journal for Light and Electron Optics, 117 (7) (2006) pp. 329-340.
    9. P. D. Lin, and Chi-Kuen Sung, “Camera Calibration Based on Snell's Law,” ASME, Journal of Dynamics, Measurement and Control., 128 (3) (2006) pp.548-557.
    10. Psang Dain Lin and Sung Chi-Kuen, "Camera Calibration Based on Paraxial Ray-Tarcing," sumit to Image and Vision Computing, 2006.
    11. Roger Y. Tsai, "A versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses", IEEE Journal of Robotics and Automation, RA-3 (4) (1987) pp. 323-344.
    12. Chi-Kuen Sung and P. D. Lin, "Comparing Two New Camera Calibration Methods with Traditional Pinhole Calibrations," sumit to Optical Express, 2006.
    13. W. J. Smith, Modern Optical Engineering, Third Edition, SPIE Press. McGRAW-HILL, New York, 2001.
    14. M. Born and E. Wolf, Principles of Optics, Pergamon, New York, 1985.
    15. Longhurst R. S., Geometrical and Physical Optics, Longmans Green, pp. 42-44, 1964.
    16. Eugene Hecht, Optics, 4rd Edition, Addison Wesley Longman, Inc., New York, 2002.
    17. P. D. Lin, and Liao, T. T., "A New Model of Binocular Stereo Vision System," ASME Journal of Dynamics, Measurement and Control, 126 (1) (2004) pp. 102-114.
    18. R. A. Hicks and R. K. Perline, "Equiresolution Catadioptric Sensors," Appl. Opt., 44 (29) (2005) pp. 6108-1114.
    19. Taylor C. J. and Kriegman D. J. "Vision-Based Motion Planning and Explortion Algorithms for Mobile Rbots," IEEE Trans. on Robotics and Automation, 14 (3) (1998) pp.417-426.
    20. Murray, D. and Basu, A., "Motion Tracking with an Active Camera," IEEE Transactions on Pattern Analysis and Machine Intelligence, 16 (5) (1994) pp. 449-459.
    21. Taylor C. J. and Kriegman D. J., "Vision-Based Motion Planning and Exploration Algorithms for Mobile Robots," IEEE Trans. on Robotics and Automation, 14 (3) (1998) pp. 417-426.
    22. Abdel-Aziz, Y.I. and Karara, H.M., "Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry," Proceedings of the Symposium on Close-Range Photogrammetry (pp. 1-18), Falls Church, VA: American Society of Photogrammetry, 1971.
    23. Hatze, H., "High-Precision Three-Dimensional Photogrammetric Calibration and Object Space Reconstruction Using a Modified DLT-Approach," J. Biomech 21 (1988) pp.533-538.
    24. Lenz, R. and Tsai, R., Sep., "Techniques for Calibration of the Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology," IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI--10(5) (1988) pp. 713-720.
    25. Weng, J. , Cohen, P. and Herniou, M., " Camera Calibration with Distortion models and accuracy evaluation," IEEE Trans. Pattern Analysis and Machine Intelligence, 14, (10) (1992) pp.965-980.
    26. Z. Zhang, "A Flexible New Technique for Camera Calibration," IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (11) (2000) pp.1330-1334.
    27. Ma, L. Chen, Y. Q., and Morre, K. L., " Flexible Camera Calibration Using a New Analytical Radial Undistortion Formula with Application to Mobile Robot Localization," Proceedings of the IEEE International Symposium on Intelligence Control, (2003) pp.799-804.
    28. Wang, F. Y., "A Simple and Analytical Procedure for Calibrating extrinsic Camewra Parameters," IEEE Trans. Robotics and Automation, 20, (1) (2004) pp.121-124.
    29. Wang, F. Y., "An Effecient Coordinate Frame Calibration Method for 3-D Measurement by Multiple Camera Systems," IEEE Trans. Systems, Man, and Cybernetics: Part C, 35 (5) (2005).
    30. Klette, R., SchlUns, K. and Koschan, A., Computer Vision: Three-Dimension Data from Images, Springer-Verlag Singapore, Pte. Ltd., p.44, 1998.
    31. Foley, J. D., Dam, A. V., Feiner, S. K., and Hughes, J. F., Computer Graphics, Principles and Practices, 2nd Edition, Addision-Wesley Publishing Company, 1981.
    32. Wu, C. H., "Robot Accuracy Analysis Based on Kinematics," IEEE Journal of Robotics and Automation, Vol. RA-2/3, (1986) pp. 171-179.
    33. Denavit, J. and Hartenberg, R. S., "A Kinematic Notation for Lower Pair Mechanisms Based on Matrices," Transactions of the ASME Journal of applied mechanics, Vol. 77 (1955) pp. 215-221.
    34. Uicker, J. J., "On the Dynamic Analysis of Spatial Linkages Using 4x4 Matrices," Dissertation for Doctor of Philosophy, Northwestern University, Evanston, IL., Aug., 1965.
    35. Paul, R. P., Robot Manipulators-Mathematics, Programming and Control, MIT press, Cambridge, Mass., 1982.
    36. 廖德潭, "雙照相機立體成像系統的建模與分析Analysis and Modeling of Two-CCD Camera Stereo Vision System," 成功大學機械系博士論文,中華民國九十二年一月。
    37. A. E. Attard, "Matrix Optical Analysis of Skew Rays in Mixed Systems of Spherical and Orthogonal Cylindrical Lenses," App. Opt., 23 (16) (1984) pp. 2706-2709.
    38. 盧嘉鴻, "雷射追蹤器的光學建模與分析Optical Modeling and Analysis of Laser Tracker," 成功大學機械系博士論文,中華民國九十三年七月。
    39. 江適文, "幾何光學之光跡追蹤研究Study of Ray Tracing in Geometrical Optics," 成功大學機械系碩士論文,中華民國九十年六月。
    40. David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach, Prentice Hall, New York, 2003.
    41. S. L. Salas, E. Hille, G. J. Etgen, Calculus: One and Several Variables, 9th Edition, Wiley, New York, 2003.
    42. Mitutoyo Corporation, Geopak 800E/2800E General Purpose Measuring Program Function Manual, Mitutoyo Corporation, 1993.
    43. Mitutoyo Corporation, Geopak 800E/2800E General Purpose Measuring Program Operation Guide, Mitutoyo Corporation, 1993.
    44. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 2/E, Prentice Hall, New York, 2002.

    下載圖示 校內:立即公開
    校外:2007-01-19公開
    QR CODE