簡易檢索 / 詳目顯示

研究生: 邱啟勝
Chiu, Chi-Sheng
論文名稱: BGA錫球製程研究及影像控制
A Study on the Production of BGA Solder Balls & image control
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 71
中文關鍵詞: 均勻液滴錫球影像擷取系統
外文關鍵詞: solder ball, Uniform-Droplet Spray, image-enlargement analysis system
相關次數: 點閱:168下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中 文 摘 要

    本研究運用高速影像擷取系統、影像放大分析系統、溫控加熱模組、微機電振動與回授系統等技術,建立系統化的球柵陣列(BGA)球狀焊材製程技術,並以均勻液滴噴射製程為主概念之錫球製程。本文使用壓電式震盪器產生均勻之擾動波並建立液滴成形環境絕氧處理機制將熔融液體液滴化,使用氮氣注入均勻液滴噴射機構之腔體中,以達到腔體內外壓差之穩定氣體射出均勻錫液滴球(Sn-37wt%Pb),並利用影像回授系統控制震盪器產生的頻率,使得產生固定尺寸範圍的錫液滴球或微小水球。
    本文著重於(1)以三種噴嘴孔徑(0.44mm、0.33mm和0.22mm)建立均勻液滴噴射製程之最佳參數為主概念;(2)使用壓電式震盪器液滴化處理方法,以產生均勻之擾振動波,配合腔體內絕氧環境使之射出均勻錫球;(3) 運用影像放大分析系統使所拍攝的液滴球能準去的計算出液滴球的直徑;(4) 使用高速影像擷取系統與影像分析系統兩者所分析之液滴球直徑,經由回授程式控制震盪器產生的頻率,以研製連續單粒固定範圍直徑之液滴球製程;(5)液滴球設備之實驗環境設定與建立簡單化之機構。於實驗條件設定部分,經由適度調整震盪頻率、震盪桿與坩鍋圓型孔洞距離及氣體吹出壓力等參數,分別對於三種噴嘴孔徑做均勻液滴噴射製程實驗,各別找出球徑大小、擾動頻率與吹氣壓力之關係式,可提供相同製程製作錫球液滴之參考。
    並將本實驗之有回授控制與無回授控制所產出的錫液滴球進行影像的尺寸分部分析,以驗證本研究有回授控制之可行性與實用性。未來的研究方向將朝著特殊錫球研製、吹氣壓力控制系統改良及電腦化品質檢驗分析等三個方向進行。

    Abstract
    With the integration of high speed image capture system, image-enlargement analysis system, temperature-control heating module, micro-machinery techniques and feedback system, this study is to develop a systematically fabricated process of BGA solder ball based on the concept of the Uniform-Droplet Spray (UDS).
    A piezoelectric vibrator was applied to generate uniform disturbance waves and nitrogen was used to expel the oxygen to produce an oxygen-isolated environment, which make molten metal become droplets. With a stable pressure difference of gas between the inside and the outside of the crucible and the frequency control of the vibrator by an image feedback system, the droplets of uniform size can be ejected from the nozzle located at the bottom of the crucible. After solidification, the liquid droplets of Sn-37wt%Pb alloy become the solder balls of a fixed diameter.
    This study put more emphasis on the following concepts and working conditions: (1) the inlet diameters of the nozzles are 0.44 mm, 0.33mm, and 0.22mm, respectively, (2) the combination of the piezoelectric vibrator and the oxygen-isolation environment for making uniform solder balls, (3) the usage of the image-enlargement system for precisely measuring the diameters of the solder balls, (4) the usage of feedback program for continuously producing the solder balls of a fixed diameter, (5) the adjustment of the working parameters (including the distance between the end of the vibrating rod and the outlet hole of the crucible, vibrating frequency, and gas pressure) for obtaining the relationship among them.
    With and Without the feedback control, the diameter distributions of the resulting solder balls were analyzed to verify the feasibility and practicability of the feedback control. The future work can be on (1) the fabrication of the smaller solder balls, (2) the modification of the gas pressure control, (3) the computerization of the quality analysis of the produced solder balls.

    目錄 頁碼 中文摘要 ............................................... I ABSTRACT ............................................... II 誌謝 .................................................. III 目錄 ................................................... IV 圖目錄 ................................................. V 表目錄 ................................................. VI 第一章 緒論………………………………………………………… 1 第二章 實驗方法與設備…………………………………………… 6 2-1 攝影系統改善……………………………………………… 6 2-1-1 改善景深之深度…………………………………… 8 2-1-2影像放大和提升畫質……………………………… 11 2-1-2-1數位式電腦補插點運算方式………………… 11 2-1-2-2光學方式……………………………………… 12 2-1-2-3搭配更小尺寸CCD達到倍率放大…………… 14 2-2實驗設備和方法 …………………………………………… 17 2-2-1均勻液滴噴射機機構與架構之改良……………… 18 2-2-1-1原始的均勻液滴噴射機構…………………… 18 2-2-1-2改良的均勻液滴噴射機構…………………… 18 2-2-2改變噴嘴尺寸……………………………………… 20 2-2-3氧氣含量的影響…………………………………… 24 2-3影像尺寸計算及分析……………………………………… 25 2-3-1 像數計算…………………………………………… 25 2-3-2 尺標校正…………………………………………… 28 2-4液滴尺寸控制之回授系統………………………………… 30 2-5實驗步驟與參數設定……………………………………… 32 2-5-1 溫度控制器及坩鍋本體…………………………… 33 2-5-2 壓電式震盪器及訊號產生器……………………… 34 2-5-3 氮氣壓力及流量控制……………………………… 37 2-5-4 攝影機及背光模組………………………………… 37 2-5-5 電腦與訊號產生器連線…………………………… 38 第三章 結果與討論………………………………………………… 39 3-1 含氧量對液滴產生的影響………………………………… 39 3-1-1高氧環境…………………………………………… 39 3-1-2絕氧環境…………………………………………… 42 3-2 不同實驗參數設定之製程………………………………… 44 3-2-1噴嘴孔徑0.44mm製作錫球………………………… 45 3-2-2噴嘴孔徑0.33mm製作錫球………………………… 49 3-2-3 噴嘴孔徑0.22mm製作錫球………………………… 52 3-2-4 噴嘴孔徑0.44mm製作小水球……………………… 55 3-2-5 噴嘴孔徑0.33mm製作小水球……………………… 59 3-2-6 噴嘴孔徑0.22mm製作小水球……………………… 61 3-3以回授系統控制液滴成品直徑之結果………………………64 第四章 結論……………………………………………………………67 參考文獻……………………………………………………………… 68 自述…………………………………………………………………… 71 圖目錄 頁碼 圖1-1 BGA錫球迴焊過程…………………………………………… 3 圖1-2 UDS生產設備示意圖………………………………………… 3 圖2-1 微距攝影,容易因景深太淺而影像模糊…………………… 7 圖2-2 左為螞蟻長度2mm,中為0.8mm,右為拍攝的錫球0.36mm..7 圖2-3 光圈大小與景深之關係圖…………………………………… 9 圖2-4 大小光圈造成影像清晰度的差別…………………………… 10 圖2-5 原有與改造後的均勻液滴噴射機構之比較………………… 11 圖2-6 補插點和光學式放大圖像之比較…………………………… 11 圖2-7 數位式電腦補插點之方式…………………………………… 12 圖2-8上圖長鏡頭視角小所拍攝得到影像較大,下圖短鏡頭(廣角鏡頭)視角廣所拍攝之錫球顯示較小且顆數多 ……………… 13 圖2-9 使用近拍片與未使用時的比較……………………………… 13 圖2-10 快門速度對於拍攝影像的關係………………………………15 圖2-11 傳統底片與 1/3”CCD拍攝的球體影像大小之不同……… 15 圖2-12 傳統底片與1/3”CCD面積比較圖………………………… 16 圖2-13 本實驗使用的影像感光元件1/3”CCD …………………… 16 圖2-14 修改攝影系統前、後拍攝結果比對…………………………17 圖2-15 原始設計之均勻液滴噴射機構本體…………………………19 圖2-16 修改後之均勻液滴噴射機構本體……………………………19 圖2-17 藍寶石噴嘴尺寸圖……………………………………………21 圖2-18 藍寶石噴嘴、熔解爐底盤與熔解爐之組合圖………………22 圖2-19 鑲嵌方式接合藍寶石噴嘴與坩鍋……………………………22 圖2-20 耐高溫之陶瓷黏著劑填補相異材質之接合介面……………23 圖2-21 陶瓷材質之黏著劑……………………………………………23 圖2-22 以解析度78萬像數CCD拍攝球體影像…………………… 26 圖2-23 面積擷取工具擷取球體面積…………………………………27 圖2-24 游標卡尺實際測量錫鉛球直徑………………………………27 圖2-25 以相同標準拍攝一把尺及液滴圖像…………………………28 圖2-26 設定影像之顯示單位為像素…………………………………29 圖2-27 使用度量工具量測透明尺的尺寸……………………………29 圖2-28 使用度量工具量測液滴的尺寸………………………………30 圖2-29 將尺與液滴影像重疊,再次驗證計算結果…………………30 圖2-30 控制液滴直徑之回授流程圖…………………………………31 圖2-31 實驗設備架構圖………………………………………………32 圖2-32 溫度控制器……………………………………………………33 圖2-33裝盛金屬熔液之不鏽鋼坩鍋…………………………………33 圖2-34 金屬液滴生成現象……………………………………………34 圖2-35 洞口超音波加工藍寶石噴嘴…………………………………34 圖2-36震盪器及震動桿………………………………………………35 圖2-37 訊號產生器……………………………………………………36 圖2-38 訊號放大器……………………………………………………36 圖2-39 固定攝影鏡頭之光圈、焦長、焦距…………………………37 圖2-40 電腦與訊號產生器連線及回授系統…………………………38 圖3-1 製造錫液滴在高氧環境下有無震盪器之比較……………… 40 圖3-2 製造水液滴在高氧環境下有無震盪器之比較……………… 41 圖3-3 擾動頻率與吹氣壓力不匹配………………………………… 42 圖3-4 吹氣壓力過小及擾動頻率過小時錫液滴球………………… 43 圖3-5 吹氣壓力過大及擾動頻率過大時錫液滴球之形狀………… 43 圖 3-6 震盪器的擾動頻率與錫球直徑的關係(噴嘴孔徑0.44mm)46 圖 3-7 震盪器的擾動頻率與吹氣壓力的關係(噴嘴孔徑0.44mm,錫球製作)……………………………………………………… 47 圖 3-8 吹氣壓力與錫球直徑的關係(噴嘴孔徑0.44mm)…………48 圖 3-9 震盪器的擾動頻率、錫球直徑和吹氣壓力三者的關係(噴嘴孔徑0.44mm)………………………………………………… 48 圖 3-10 震盪器的擾動頻率與錫球直徑的關係(噴嘴孔徑0.33mm).49 圖 3-11 震盪器的擾動頻率與吹氣壓力的關係(噴嘴孔徑0.33mm錫球製作)……………………………………………………… 51 圖 3-12 吹氣壓力與錫球直徑的關係(噴嘴孔徑0.33mm)……… 51 圖 3-13 震盪器的擾動頻率、錫球直徑和吹氣壓力三者的關係(噴嘴孔徑0.33mm)……………………………………………… 52 圖 3-14 震盪器的擾動頻率與錫球直徑的關係(噴嘴孔徑0.22mm).53 圖 3-15 震盪器的擾動頻率與吹氣壓力的關係(噴嘴孔徑0.22mm錫球製作)……………………………………………………… 54 圖 3-16 吹氣壓力與錫球直徑的關係(噴嘴孔徑0.22mm)……… 54 圖 3-17 震盪器的擾動頻率與錫球直徑的關係(三種噴嘴孔徑)…55 圖 3-18 震盪器的擾動頻率與小水球直徑的關係(噴嘴孔徑0.44mm)……………………………………………………… 56 圖 3-19 震盪器的擾動頻率與吹氣壓力的關係(噴嘴孔徑0.44mm小水球製作)………………………………………………… 57 圖 3-20 吹氣壓力與小水球直徑的關係(噴嘴孔徑0.44mm)…… 58 圖 3-21 震盪器的擾動頻率、小水球直徑和吹氣壓力三者的關係 (噴嘴孔徑0.44mm)…………………………………………… 58 圖 3-22 震盪器的擾動頻率與小水球直徑的關係(噴嘴孔徑0.33mm)………………………………………………………59 圖 3-23 震盪器的擾動頻率與吹氣壓力的關係(噴嘴孔徑0.33mm,小水球製作)……………………………………………………60 圖 3-24 吹氣壓力與小水球直徑的關係(噴嘴孔徑0.33mm)…… 60 圖 3-25 震盪器的擾動頻率、小水球直徑和吹氣壓力三者的關係 (噴嘴孔徑0.33mm)…………………………………………… 61 圖 3-26 震盪器的擾動頻率與小水球直徑的關係(噴嘴孔徑0.22mm)………………………………………………………62 圖 3-27 震盪器的擾動頻率與吹氣壓力的關係(噴嘴孔徑0.22mm小水球製作)………………………………………………… 62 圖 3-28 吹氣壓力與小水球直徑的關係(噴嘴孔徑0.22mm)…… 63 圖 3-29 震盪器的擾動頻率、小水球直徑和吹氣壓力三者的關係(噴嘴孔徑0.22mm)…………………………………………… 63 圖3-30 無回授控制下錫球直徑與個數之分部圖……………………65 圖3-31 有回授控制下錫球直徑與個數之分部圖……………………66 表目錄 頁碼 表3-1 不同噴嘴出口尺寸製作錫球的實驗參數彙整表………… 44 表3-2 不同噴嘴出口尺寸製作小水球的實驗參數彙整表……… 45

    參 考 文 獻

    1. 劉漢誠編著,趙建基、姜信騰、李青峰、周意工、陳豫台及陳榮泰編譯「球腳格狀陣列封裝技術」,鴻海精密工業,1997.
    2. Rao R. Tummala「Fundamentals of Microsystems Packaging」McGRAW-HILL International Edition, pp.278-292, 2001.
    3. 呂明生、王正和,「BGA錫鉛球之製程介紹」,工業材料,vol. 139,1998.
    4. J. H. Chun and C. H. Passow, “A Study of Spray Forming Using Uniform Droplet Spray,” U.S. Patent, No.5, 266, 098, 1993.
    5. M. J. Lovelady and J. D. Watts, “Colsed Loop Feedback for Continuous Mode Materials Jetting,”IEEE/CPMT Int’I Electronics Manufacturing Technology Symposium, pp. 189-195, 1999.
    6. A. A. Tseng, M. H. Lee and B. Zhao, “Design and Operation of a Droplet Deposition System for Freeform Fabrication of Metal Parts,”Transaction of the ASME, Vol. 123, pp. 74-84.
    7. C. Weber, “The Decomposition of a Liquid Jet,”Z. Angew. Math. Mech., Vol. 11, pp. 136-154.
    8. B.V. Artem’ev and S.G. Kochetov, “Capillary Breakup of a Liquid Metal Jet in an Oxidizing Medium,” Journal of Physics, Vol. 60, pp. 425-429, 1991.
    9. H. Haj-Harir and D. Poulikakos, “Capillary Instability of a Cylindrical Jet with an shroud: A Model for the Breakup of an Oxidized Metal Jet,” Journal of Applied Mechanic, vol.67, pp. 626-628, 2000.
    10. 賴維祥、陳家進,“氧化對熔融金屬液柱斷裂及其成之顆粒外形之影響”,粉末冶金會刊,第 28 卷,第 2 期,pp. 76-87, 2003.
    11. P.Yim, J.H Chun, T. Ando and V. K. Sikka, “Production and Charaterization of Mono-sized Sn-38wt%Pb Alloy Balls,” The International Journal of Power Metallurgy, vol. 32, No.2, pp.155-163, 1996.
    12. 陳家進、賴維祥,“多孔噴嘴產生單粒徑金屬液滴之研究”,科技學刊,第13卷,第 1 期,pp. 1-7, 2003.
    13. A.Kawasaki, Y.Kuroki and R. Watanabe, Proc. 1993 Powder Metallurgy World Congress, Kyoto, Japan, July 1993, compiled by Bando and K. Kosugem Jap. Soc. Powder and Powder Metallurgy, 1993, pp. 27.
    14. Ando, S. Sahu and J.-H. Chun, “In-Fligt Solidification of Uniform Droplets of Sn-25%Pb and Sn-40%Pb Alloys”, Proc, Powder Metallurgy World Congress, Kyoto, Japan, July 1993, compiled by Bando and K. Kosuge, Jap. Soc. Powder and Powder Metallurgy , 1993, pp. 971.
    15. J.-P. Cherng, J.-H. Chun and T. D. Ando: Proc. TMS Annual Meeting – Solidificatinn 1998, pp. 317.
    16. 精密儀器發展中心,「眞空技術與應用」,2001.
    17. B. Kempf, M. Graff, O. Hutin, and M. Rettenmayr“Lead-Free Ball-Grid Array Balls : Production Method and Properties”. Journal of Electronic Materials, Vol. 31, No. 11, 2002.
    18. 張郭益,「精密量測實習」,高立圖書有限公司,第258-259 頁, 1999.
    19. 精密儀器發展中心,「Micro Electro Mechanical Systems Technology and Application」,第 952-995頁,2003.
    20. S.O. Kasap 「Principles of Electronic Materials and Devices」Second Edition, pp.81-89, 2002.
    21. 李芳儀,“銅含量對Sn-Ag-Cu無鉛焊錫振動破壞效應之特性”,國立成功大學材料研究所碩士論文, 2003.
    22. 饒珮瑩,“利用微機電技術設計及製作壓電式微型加速計”,國立成功大學碩士論文, 2003.
    23. 李俊翰,“PZT 壓電致動器之製程與鐵電特性研究”,國立交通大學碩士論文,2001.
    24. 吳朗編著,「電子陶瓷-壓電」,全欣科技,1994.
    25. 陳柏榮,“壓電驅動材料測試系統之實現與其在電子封裝上之應用”,國立成功大學機械工程研究所碩士論文,2001.
    26. 汪建民,「陶瓷技術手冊(上)」,經濟部技術處發行,1994 .

    下載圖示 校內:立即公開
    校外:2006-08-25公開
    QR CODE