簡易檢索 / 詳目顯示

研究生: 盧嘉鴻
Lu, Chia-Hung
論文名稱: 雷射追蹤器的光學建模與分析
Optical Modeling and Analysis of Laser Tracker
指導教授: 林昌進
Lin, Psang-Dain
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 188
中文關鍵詞: 歪斜光線追蹤雷射追蹤器
外文關鍵詞: Laser Tracker, Skew ray tracing
相關次數: 點閱:155下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

      雷射追蹤技術的運用領域十分廣泛,例如:醫療上對病人的姿勢校準、雷射近視手術時的眼球追蹤定位、軍事上對飛行物體目標的追蹤以獲得軌道的資料、特殊車輛的追蹤、與工程上對構件的3-D座標量測等。利用雷射追蹤技術所發展而成的雷射追蹤器可以克服大型物件量測的限制,並在大型的工作範圍內做三度空間座標量測。然而目前此儀器的量測精度,尚無法與三次元量床媲美,因為此系統的反射鏡尺寸誤差及回射器的對準誤差會降低系統的精度。
      由於雷射追蹤器有潛力成為精密量測的重要儀器,因而激起本研究之動機。本文首先利用4×4齊次座標轉換矩陣為數學工具,就光線行經介質邊界時,其折(反)射光線行進方向及入射點位置進行回顧。並以靈敏度分析矩陣組成光學系統評價函數,設計雷射追蹤器的回射器,經分析其性能較以近軸光學法設計之回射器有更好的回射性質。
    經由儀器的誤差分析,可提高應用儀器的量測精度。因此本文將運用歪斜光線追蹤法,對雷射追蹤器進行數學建模,進而推導該儀器的位置感測器讀數、干涉器讀數,及分析雷射追蹤器的運作方式,並利用軟體模擬,以驗證方程式的正確性並進一步實施誤差分析。
      雷射追蹤器會因製造精度不足而有誤差,本文考慮三種主要的誤差: (1)反射鏡機構的尺寸誤差;(2)量測操作時的回射器對準誤差;(3) 位置感測器的誤差讀數與伺服馬達編碼器讀數的關係。由誤差分析的結果得知:(1)反射鏡機構的尺寸誤差,對雷射追蹤器精度影響很大;(2)用實心玻璃直角回射器量測,只能透過細心謹慎的量測,才能提高雷射追蹤器的精度。若用垂直角鏡回射器,則無對準誤差,此亦為雷射追蹤器均使用垂直角鏡回射器的緣故。
      本文最後以實際量測進行驗證。利用CMM的量測值與雷射追蹤器的實際量測值做比較,發現雷射追蹤器的精度尚有改善的空間,未來將發展可行的校正理論,做為提高雷射追蹤器精度的有效方法之一。

    ABSTRACT

      Laser tracking techniques are widely used in many fields, for example patient alignment in CT scanning, eye movement tracking for laser eye surgery, target tracking for military applications and 3-D coordinates measurement for engineering purposes. Coordinate measurement laser trackers (CMLT) such as the Leica Smart 310 have two major advantages: (1) the ability to track a target retroreflector automatically; (2) the ability to measure large objects.
      CMLT have great potential as precision measuring instruments, but its precision is compromised by errors during manufacture and operation. Therefore this study presents a skew ray tracing method for modeling and sensitivity analysis of CMLT. In order to achieve this, revolution geometry, homogeneous coordinate transformation matrices and Snell’s laws are used to determine: 1) the direction of refracted (reflected) rays based on Snell’s laws; 2) sensitivity analysis expressing differential changes of refracted (reflected) rays in terms of differential changes of incident rays. These are then applied to the optimum design of a cat’s eye retro-reflector. Finally, the skew ray tracing method is employed to build a mathematical model of the CMLT and to study the effects of possible errors to CMLT measurement results. Three major errors are considered in this study: 1) dimension errors of the mirror mechanism; 2) retroreflector alignment errors; 3) relations between PSD reading and retroreflector position. Error analysis results indicate that: 1) mirror-mechanism link dimension errors have great influence on laser tracker precision; 2) extra caution is needed to avoid alignment errors when measuring with a solid corner cube retroreflector.
      Comparing the measurement precision of CMLT with CMM indicates that CMLT technology is still not optimized, and the development of practical CMLT alignment theory and methodology is the best way to achieve this goal.

    目 錄 中文摘要 I 英文摘要 III 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XI 英文符號說明 XIII 第一章、導論 1 第二章、文獻回顧 3 2.1、幾何光學基本定理 3 2.2、光線追蹤文獻回顧 7 2.3、齊次座標轉換 9 2.4、Denavit-Hartenberg座標設定規則 16 2.5、三次元量床簡介 22 2.6、雷射於量測之運用 28 2.7、雷射追蹤器簡介 30 2.8、雷射追蹤器文獻回顧 36 第三章、歪斜光線追蹤及應用 40 3.1、摘要 40 3.2、歪斜光線追蹤 42 3.3、靈敏度分析 54 3.4、單色光之像差方程式 61 3.5、靈敏度分析法於貓眼回射器設計之運用 65 第四章、雷射追蹤器的光學建模 78 4.1、雷射追蹤器之構造 78 4.2、座標系統之設定 80 4.3、垂直角鏡回射器的光線追蹤 87 4.4、雷射光束經過回射器後之光線追蹤 98 第五章、雷射追蹤器誤差分析 106 5.1、反射鏡機構的尺寸誤差 106 5.2、反射鏡機構尺寸誤差的計算 109 5.3、回射器的對準誤差 114 5.4、位置感測器讀數與回射器對準位置的關係 116 第六章、實驗量測 119 6.1、雷射追蹤器重現性量測 119 6.2、雷射追蹤器量測擋風玻璃 120 6.3、CMM量測擋風玻璃 127 6.4、雷射追蹤器量測與CMM量測的比較 130 第七章、結論與未來展望 133 7.1、結論 133 7.2、未來展望 135 參考文獻 137 著作 166 自述 167

    參考文獻
    1. Lau, K., Hocken, R., Haight W., “Automatic Laser Tracking Interferometer System for Robot Metrology,” Precision Engineering, Vol. 8, No.1, pp3-8, 1986.
    2. Smith, W. J., “Modern Optical Engineering,” Third Edition, SPIE Press. McGRAW-HILL, New York, 2001.
    3. Born, M., and Wolf, E., Principles of Optics, Pergamon, New York, 1985.
    4. Hecht, E., Optics, 3rd edition, Addison Wesley Longman, Inc., New York, 1998.
    5. Longhurst R. S., "Geometrical and Physical Optics, Longmans" Green, pp. 42-44, 1964.
    6. Welford, W. T., Aberrations of the Symmetrical Optical System, Academic Press, New York, 1974.
    7. Andersen, T. B., “Optical Aberration Functions: Derivatives With Respect To Surface Parameters For Symmetrical Systems.,” Applied Optics, Vol. 24, p.1122, 1985
    8. Andersen, T. B., “Optical Aberration Functions: Derivatives With Respect To Axial Distances For Symmetrical Systems.,” Applied Optics, Vol. 21, p.1817, 1982.
    9. Andersen, T. B., “Evaluating Rms Spot Radii by Ray Tracing.” Applied Optics, Vol.21, p.1241, 1982.
    10. Lin P. D., "Analysis and Modeling of Optical Element and Systems,” ASME Journal of Engineering for Industry, Vol. 116, No. 1, pp. 101-107, 1994.
    11. Laikin, M., ‘Lens Design’, Second Edition, New York, Marcel Dekker, Inc. 1995.
    12. Lin, P. D., and Ehmann, K. F., Sensing of Motion Related Errors in Multi-axis Machines, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 118, No. 3, pp. 425-433, 1996.
    13. Liao, T. T., and Lin, P. D., “Analysis of Optical Elements with Flat Boundary Surfaces,” Applied Optics,, Vol. 42, pp. 1191, 2003.
    14. Foley, J. D., Dam, A. V., Feiner, S. K., and Hughes, J. F., Computer Graphics, Principles and Practices, 2nd Edition, Addision-Wesley Publishing Company, 1981.
    15. Paul, R. P., Robot Manipulators-Mathematics, Programming and Control, MIT press, Cambridge, Mass., 1982.
    16. Wu, C. H., “Robot Accuracy Analysis Based on Kinematics,” IEEE Journal of Robotics and Automation, Vol. RA-2/3, pp. 171-179, 1986.
    17. Denavit, J. and Hartenberg, R. S., “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” Transactions of the ASME Journal of applied mechanics, Vol. 77, pp. 215-221, 1955.
    18. Uicker, J. J., “On the Dynamic Analysis of Spatial Linkages Using 4x4 Matrices,” Dissertation for Doctor of Philosophy, Northwestern University, Evanston, IL., Aug., 1965.
    19. Denavit, J., and Hartenberg, R. S., “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” ASME,, J. of applied mechanics, Vol. 22, Vol. 77, pp. 215-221, 1955.
    20. Geopack 810 General Purpose and Mission Function Manu, Mitutoyo Cops., Japan, 1990.
    21. Lin, Y. J., "A New Alogrithm for Determining a Collision-Free Path for a CMM Probe,” International Journal of Machine Tools & Manufacture, Vol. 39, pp. 1397-1408, 1999.
    22. Kawabe, 1 S. Kimura, F. and Sata, T., "Generation Of NC Commands For Sculptured Surface Machining From 3-Coordinate Measuring Data," Annual of the CIRP, Vol. 29/1, 1980.
    23. Lu, Jie-chi., "Two Dimensional Tracing and Measurement Using Touch Trigger Probes," Annals of the CIRP, VOL. 31/1, 1982.
    24. Duffie, N. Bollinger, J. Ripper, R. Kroneberg, M., "CAD Directed Inspection and Error Analysis Using Surface Path Database,” Annals of the CIRP, Vol.33/1, 1984.
    25. Theodore, H., Hopp-Sponsored by R. J. Hocken, "CAD-directed Inspection,” Annals of the CIRP, Vol. 33/1, 1984.
    26. Lau, K., Duffie, N., Bollinger, J., "Automatic Contour Measurement for Three-Dimensional Geometry,” ASME, Manufacturing Engineering Transactions, pp.535-541, 1985.
    27. Mccartney, J., and Hinds, B. K., "The Manufacture Of Complex Surfaces From Model Data,” The International Journal of Advanced Manufacturing Technology, Vol. 16, No. 2, 1987.
    28. Zhang, G., "Error Compensation of Coordinate Measuring Machines,” Annals of the CIRP. Vol. 34/1, 1985.
    29. Eversheim, W., and Auge, J., "Automatic Generation of Part Programs for CNC-Coordinate Measuring Machines Linked to CAD/CAM Systems,” Annals of the CIRP, Vol. 35/1, 1986.
    30. Kunzmann, H., " Performance of CMMs,” Annals of the CIRP, Vol. 37/2/, 1988.
    31. Medland, A. J., Mullineux, G., Butler, C., and Jones, B. E., " The Interation of Coordinate Measuring Machines Within a Design and Manufacturing Environment,” Institution of Mechanical Engineers, Proceedings. Part B-Journal of Engineering Manufacture, pp. 91-98, 1993.
    32. Phank, H. J., Kim, Y. H., Hong, Y. S and Kim, S. G., " Development of Computer-aided Inspection System with CMM for Integrated Mold Manufacturing ,” Annals of the CIRP, 42(1), pp. 557-560, 1993.
    33. Lin, Psang Dain., Hsieh, Jung-Fa., "Dimension Inspection of Spatial Cams by CNC COordinate Measuring Machines," ASME Journal of Manufacturing Science and Engineering, Vol.122, pp.149-157, 2000.
    34. Lai, J.Y., and Ueng, W. D., “Reconstruction of Surface of Revolution from 3D Measured Data,” Computer in Industry, Vol. 41, pp. 147-161. 31. 2000.
    35. Lai, J.Y., and Ueng, W. D., “G2 Continuity for Multiple Surfaces Fitting,” The International Journal of Advanced Manufacturing Technology, in press. 2000.
    36. 陳志忠, “相對論的先驅之一──麥克森” 科學月刊,第281期,pp35,1993年5月
    37. Product Menu of LADARVision from Summit Autonomous, Incorporated, 2003.
    38. Laser Tracking System LTS 2000., BAE SYSTEMS, Technical Services, Business Development, 557 Mary Esther Cut-Off, Fort Walton Beach, Florida 32548
    39. Photonics Applications from “Photonics Spectra,” June, 1999.
    40. Automated part positioning with the laser tracker Fifth International Workshop on Accelerator Alignment ANL/FNAL October 13 - 17, 1997
    41. Kyle, Loser, Warren., “Automated Part Positioning With The Laser Tracker” Fifth International Workshop on Accelerator Alignment ANL/FNAL October 13 - 17, 1997
    42. Werner Schertenleib., “Measurement Of Structures (Surfaces) Utilizing The Smart 310 Laser-Tracking-System,” Proceedings Of The 4th International Workshop On Accelerator Alignment, vol, 3. pp. 251-260, 1996.
    43. Leica Smart 310 Laser Tracker Owner’s Manual, (Leica Inc. Geodesy and Industrial Systems Center, 3155 Medlock Bridge Road, Norcross, Georgia 30071, USA.).
    44. Craig, J., Introduction to Robotics; Mechanics and Control, Addision-Wesley Publishing Company Inc, Sydney, pp. 391, 1989.
    45. Spiess, S., Vincze, M., Krautgartner, P., Filz, K., “On Modeling the Kinematics and Optics of a Laser Tracking System for Contact less Robot Measurements, Institue of Flexible Automation, Technical University of Vienna, 1996.
    46. Lau, K., Hocken, R., Haynes, L., “Robot Performance Measurements Using Automatic Laser Tracking Techniques,” Robotics & Computer-Integrated Manufacturing, Vol. 2, No. ¾, pp. 227-236, 1985.
    47. Mooring, B.W., “Calibration of A Laser Projection System,” ASME, DSC-Vol. 29, pp. 33-41, 1991.
    48. Greenleaf, A. H., “Self-Calibrating Surface Measuring Machine”. Optical Engineering, 22(2), pp. 276-280, 1983.
    49. Toshiyuki Takatsujiy., Mitsuo Gotoy., Tomizo Kurosaway., Yoshihisa Tanimuray and Yoshihiko Kosekiz., “The First Measurement Of A Three-Dimensional Coordinate By Use Of A Laser Tracking Interferometer System Based On Trilateration” Meas. Sci. Technol. pp. 38–41, 9, 1998.
    50. Zhuang, H., Li, B., Roth, Z.S., Xie, X., “Self-calibration and Mirror Center Offset Elimination of a Multi-beam Laser Tracking System,” Robotics and Autonomous Systems, Vol.9, pp. 255-269, 1992.
    51. Zhuang, H., “Kinematic Modeling, Identification and Compensation of Robot Manipulator,” Ph.D. Dissertation, Florida Atlantic University, 1989.
    52. Hanqi Zhuang., Shui H., Motaghedi, Zvi., S Roth., and Ying Bai., “Self-calibration of Laser Tracking Systems,” FCRAR 2000 Florida Conference on the Recent Advances in Robotics, 2000.
    53. Payne, J.M., Parker, D., and Bradley, R.F., “Rangefinder with Fast Multipe Range Capability,” Review of Science Instrumentation, Vol.63, No. 6, pp. 3311-3316, 1992.
    54. Heeren, T A G., Veldpaus, F E., “An Optical System to Measure the End Effector Position for Online Control Purposed” The International Journal of Robotic Research, 11(1), pp. 53-63, 1992.
    55. Robert E. Ruland., “METROLOGY” Stanford Linear Accelerator Center Stanford University, Proceedings of the Third International Workshop on Accelerator Alignment, Annecy, Sep.28-Oct.1, pp. 101-118, 1993.
    56. Mayer, J.R.R., Parker, G.A., “A Portable Instrument for 3-D Dynamic Robot Measurement Using Trangulation and Laser Tracking,” Transactions on Robotics and Automation, IEEE, 10(4), pp. 504-516, 1994.
    57. Leigh-Lancaster, C J., “A Laser Tracking System to Measure the Position and Orientation of Robot End Effectors under Motion,” final year thesis, Department of Mechanical Engineering, Monash University, Australia.1996.
    58. Ryuhei Sugahara, Yasunobu Ohsawa, Sakae Araki, Hideaki Yamashita and Takaaki Matsui., “Performance Test of A Laser Tracker, Smart 310,” proceedings of the 4th international workshop on accelerator alignment, vol, 3. pp. 261-269, 1995.
    59. Zhang, C., Matsui, S., Ohnishi, J., Ouyang, X., Sasaki, Y., Hasegawa, K., and Tsumaki, K., “Positioing The Spring-8 Magnets With The Laser Tracker” Proceedings Of The 4th International Workshop On Accelerator Alignment, Vol, 3. pp .261-269, 1995.
    60. ASAP Optical Modeling Software, Breaut Research Organization, inc., USA, 2001.
    61. Lin, P. D., and Chen, J. F., "Analysis of Errors in Precision Closed-Loop Mechanisms," ASME Journal of Mechanical Design, Vol. 116, pp. 197-203, 1994.
    62. Liao, Te-Tan., and Lin, Psang Dain., " Analysis of Optical Elements With Flat Boundary Surfaces," The Journal of Applied Optics. Vol. 42, No. 7, pp. 1191-1202, 2003.
    63. 廖德潭, “雙照相機立體成像系統的建模與分析Analysis and Modeling of Two-CCD Camera Stereo Vision System,” 成功大學機械系博士論文,中華民國九十二年一月。
    64. Menq, C. H., Yau, H. T., and Wong, C. I., "An Intelligent Planning Environment for Automated Dimensional Inspection Using Coordinate measuring Machines," ASME J. of Engineering for Industry, Vol. 114, pp. 222-230. 1992.

    下載圖示 校內:2005-07-19公開
    校外:2005-07-19公開
    QR CODE