簡易檢索 / 詳目顯示

研究生: 林首吾
Lin, So-Wu
論文名稱: 黏附式壓電材料與膠黏劑層之Timoshenko樑的研究
Study of Timoshenko Beam with Surface Mounted Piezoelectric Material and Adhesive Layer
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 75
中文關鍵詞: 壓電材料Timoshenko樑有限元素法膠黏著層
外文關鍵詞: Timoshenko beam, piezoelectric material, adhesive layer, finite element
相關次數: 點閱:97下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文中將會探討一貼有壓電材料與膠黏著層的Timoshenko懸臂樑受外力及外加電壓下的行為,其中包括壓電材料的電荷方程式。有限元素方法中的形狀函數是由運動方程式的靜態位移解建立,並以有限元素方法來建立整個樑結構的耦合方程式組。為了使整個樑結構的震動被抑制,在系統中加入電阻連接於壓電材料層的兩端。最後以Newmark's scheme來分析系統的響應。
      將電壓置於致動器與外力施於自由端,改變壓電材料層位置、長度、厚度以及膠黏著層厚度,並探討其對系統受負載後的位移與旋轉角度分佈情況、收集電荷數量和減震的效果。

    In the thesis, the behavior of the cantilevered Timoshenko beam, whose surface is partially mounted with piezoelectric material and adhesive layer, subjected to an external force and applied voltage is studied. The charge equation of piezoelectric material is included in the study. The shape functions of one element of the entire beam are obtained by solving the equations of static equilibrium with nodal displacements of the element. Then, the finite element approach is adopted to set up the coupling equations of the motion of the entire beam and induced voltage on the piezoelectric material. To suppress the vibration of the entire beam, a resistor is inserted to connect two surfaces of the piezoelectric material. The Newmark’s scheme is adopted to analyze the behavior of the entire system. An external voltage apply at the actuator and an external force apply at the free end of the entire beam will be studied. The effects of the location, length and thickness of the piezoelectric material and thickness of the adhesive layer on deflection, torsion angle, collecting electric charge and the damping are investigated.

    摘要 I EXTENDED ABSTRACT II 誌謝 VI 目錄 VII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1-1研究動機及目的 1 1-2文獻探討 3 1-3論文架構 5 第二章 研究架構 6 2-1研究架構流程 6 2-2本文基本假設 7 第三章 研究方法及內容 8 3-1結構模型與位移函數 8 3-1-1結構模型設定 8 3-1-2 位移函數 9 3-2 推導運動方程式 10 3-2-1壓電材料基本參數 10 3-2-2 壓電材料層位移場、應力場、應變場、應變能、動能 11 3-2-3 鋁材層樑位移場、應變場、受力場、應變能、動能 13 3-2-4 膠黏著層樑位移場、應變場、受力場、應變能、動能 14 3-2-5 結構運動方程式及邊界條件 15 第四章 有限元素方法分析 21 4-1有限元素方法模型 21 4-2靜態平衡方程式 21 4-3單位元素質量矩陣與勁度矩陣的堆疊 33 4-3-1單位元素之質量矩陣與勁度矩陣 33 4-3-2單位元素矩陣堆疊 35 4-4 Newmark’s Method 36 4-4-1模擬結構震動情形 36 4-4-2壓電材料造成的減震效應 38 第五章 案例探討與模擬結果分析 40 5-1案例探討 40 5-1-1 各參數值 40 5-1-2結構之自然頻率與模態 41 5-2改變結構幾何對結構自由端位移的影響 42 5-2-1壓電材料層位置對結構自由端位移的影響 42 5-2-2壓電材料層長度對結構自由端位移的影響 47 5-2-3壓電材料層厚度對結構自由端位移的影響 50 5-2-4膠黏著層厚度對結構自由端位移的影響 54 5-3改變系統參數及結構幾何對結構振動的影響 58 5-3-1壓電材料層位置對結構振動的影響 59 5-3-2壓電材料層長度對結構振動的影響 61 5-3-3壓電材料層厚度對結構振動的影響 63 5-3-4膠黏著層厚度對結構振動的影響 65 第六章 結論與建議 67 6-1結論 67 6-2 建議 69 參考文獻 70 附錄A 72 附錄B 73 圖3.1一根單邊黏附壓電片及膠黏著層之懸臂樑結構圖 8 圖3.2各方向位移函數表示圖 8 圖3.3極化方向P和電場E方向表示圖 11 圖3.4壓電材料層電路圖 20 圖4.1結構單位元素示意圖 21 圖5.1垂直向位移之最前三個模態示意圖 41 圖5.2三種壓電材料層位置效應對於整體結構垂直位移分佈的比較 43 圖5.3三種壓電材料層位置效應對於整體結構轉角分佈的比較 43 圖5.4三種壓電材料層位置效應對於整體結構垂直方向位移分佈之比較 45 圖5.5 三種壓電材料層位置效應對於整體結構轉角分佈的比較 46 圖5.6三種壓電材料層長度效應對於整體結構垂直方向位移之比較 47 圖5.7三種壓電材料層長度效應對於整體結構轉角分佈之比較 48 圖5.8三種壓電材料層長度效應對於整體結構垂直方向位移分佈之比較 49 圖5.9三種壓電材料層長度效應對於整體結構轉角分佈之比較 49 圖5.10三種壓電材料層厚度效應對於整體結構垂直方向位移分佈之比較 51 圖5.11三種壓電材料層厚度效應對於整體結構轉角分佈之比較 51 圖5.12三種壓電材料層厚度效應對於整體結構垂直方向位移分佈之比較 52 圖5.13三種壓電材料層厚度效應對於整體結構轉角分佈之比較 53 圖5.15三種膠黏著層厚度效應對於整體結構轉角分佈之比較 54 圖5.16三種膠黏著層厚度效應對於整體結構垂直方向位移分佈之比較 56 圖5.17三種膠黏著層厚度效應對整體結構轉角分佈之比較 56 圖5.18三種壓電材料層位置效應對於結構自由端垂直方向位移過程比較 60 圖5.19三種壓電材料層長度效應對於結構自由端垂直方向位移過程之比較 62 圖5.20三種壓電材料層厚度效應對結構自由端垂直方向位移過程之比較 64 圖5.21三種膠黏著層厚度效應對結構自由端垂直方向位移過程之比較 66 表5.1結構之基本六個自然頻率 41 表5.2 三種壓電片位置對於結構自由端末端垂直位移值及所收集電荷數之效應比較 44 表5.3三種壓電片位置對於結構的前三自然頻率值之效應比較 44 表5.4 三種壓電片位置對於結構自由端末端垂直位移值及所收集電荷數之效應比較 46 表5.5 三種壓電片長度對於結構自由端末端垂直位移值及所收集電荷數之效應比較 48 表5.6 三種壓電片長度對於結構自由端末端垂直位移值及所收集電荷數之效應比較 50 表5.7 三種壓電片厚度對於結構自由端末端垂直位移值及所收集電荷數之效應比較 52 表5.8 三種壓電片厚度對於結構自由端末端垂直位移值及所收集電荷數之效應比較 53 表5.9 三種膠黏著層厚度對於結構自由端末端垂直位移值及所收集電荷數之效應比較 55 表5.10 三種膠黏著層厚度對於結構自由端末端垂直位移值及所收集電荷數之效應比較 57 表5.11 三種壓電材料層位置效應對結構振幅衰減係數的比較 60 表5.12 三種壓電材料層長度對結構振福衰減的影響 62 表5.13 三種壓電材料層厚度效應對結構振福衰減係數之比較 64 表5.14 三種膠黏著層厚度對結構振福衰減的比較 66

    1.H. S. Tzou and G. C. Wang, “Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator,” Computers and Structures, Vol.35, pp. 669-677, 1990.
    2.H. S. Tzou, and C. I. Tseng, “Distributed Vibration Control and Identification of Coupled Elastic/Piezoelectric System: Finite Element Formulation and Application,” Mechanical Systems and Signal Processing, Vol. 5, No. 3, pp. 215-231, 1991.
    3.S. K. Ha, C. Keilers, and F. K. Chang, “Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators,” AIAA Journal, Vol.30, pp. 772-780, 1992.
    4.J. Pan, C. H. Hansen, and S. D. Snyder, “A study of response of a simple supported beam to excitation by a piezoelectric actuator,” Journal of Intelligent Material Systems and Structures, Vol. 3, pp. 120-130, 1992.
    5.M. C. Ray, K. M. Rao, and B. Samanta, “Exact solution for static analysis of an intelligent structure under cylindrical bending,” Computer and Structures, Vol. 47, No. 6, pp. 1031-1042, 1993.
    6.H. Abramovich, and A. Livshits, “Dynamic behavior of cross-ply laminated beams with piezoelectric layers,” Computer Structures, Vol. 25, pp. 371-379, 1993.
    7.S. Brooks and P. Heyliger, ”Static Behavior of Piezoelectric Laminates with Distributed and Patched Actuators,” Journal of Intelligent Material Systems and Structures 5(5), pp. 635-646, 1994.
    8.S. M. Yang and Y. J. Lee, “Interaction of structure vibration and piezoelectric actuation,” Smart Materials and Structures 3(4), pp. 494-500, 1994.
    9.M. D. Sciuva and U. Icardi, “Large deflection of adaptive multilayered Timoshenko beams,” Composite structures 31(1), pp. 49-60, 1995.
    10.C. Q. Chen, X. M. Wang and Y. P. Shen, “Finite element approach of vibration control using self-sensing piezoelectric actuators,” Computers and Structures, Vol.60, No.3, pp. 505-512, 1996.
    11.J. G. Smits, W. S. Choi, and A. Ballato, “Resonance and antiresonance of symmetric and asymmetric piezoelectric flexors,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, No. 2, pp. 250-258, 1997.
    12.X. Q. Peng, K. Y. Lam and G. R. Liu, “Active Vibration Control of Composite Beams with Piezoelectric: A finite Element Model with Third Order Theory,” Journal of Sound and Vibration 209, pp. 635-650, 1998.
    13.Jing H. Hung, and Heng-I Yu, “Dynamic electromechanical response of piezoelectric plates as sensors or actuators,” Materials Letters, Vol. 45, pp. 70-80, 2000.
    14.Huang Song-Jeng, “Mathematical modeling of the stress-strain state of adhesive layers in sandwich structures,” Mechanics of Composite Materials, Vol. 38, No. 2, pp. 161-182, 2002.
    15.S. Narayanana, V. Balamuruganb, “Finite element modeling of piezolaminated smart structures for active vibration control with distributed sensors and actuators,” Journal of Sound and Vibration 262, pp. 529-562, 2003.
    16.D. H. Ryu and K. W. Wang, “Analysis of interfacial stresses and actuation authorities induced by surface-bonded piezoelectric actuators on curved flexible beams,” Smart Materials and Structures, 13, pp. 753-761, 2004.
    17.H. Antes, “Dynamic analyses of plane frames by integral equations for bars and Timoshenko beams,” Journal of Sound and Vibration 276, pp. 807-836, 2004.
    18.Jian Ping Jiang, Dong Xu Li, “A new finite element model for piezothermoelastic composite beam,” Journal of Sound and Vibration 306, pp. 849-864, 2007.

    下載圖示 校內:立即公開
    校外:2018-08-19公開
    QR CODE