| 研究生: |
林首吾 Lin, So-Wu |
|---|---|
| 論文名稱: |
黏附式壓電材料與膠黏劑層之Timoshenko樑的研究 Study of Timoshenko Beam with Surface Mounted Piezoelectric Material and Adhesive Layer |
| 指導教授: |
王榮泰
Wang, Rong-Tyai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 壓電材料 、Timoshenko樑 、有限元素法 、膠黏著層 |
| 外文關鍵詞: | Timoshenko beam, piezoelectric material, adhesive layer, finite element |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中將會探討一貼有壓電材料與膠黏著層的Timoshenko懸臂樑受外力及外加電壓下的行為,其中包括壓電材料的電荷方程式。有限元素方法中的形狀函數是由運動方程式的靜態位移解建立,並以有限元素方法來建立整個樑結構的耦合方程式組。為了使整個樑結構的震動被抑制,在系統中加入電阻連接於壓電材料層的兩端。最後以Newmark's scheme來分析系統的響應。
將電壓置於致動器與外力施於自由端,改變壓電材料層位置、長度、厚度以及膠黏著層厚度,並探討其對系統受負載後的位移與旋轉角度分佈情況、收集電荷數量和減震的效果。
In the thesis, the behavior of the cantilevered Timoshenko beam, whose surface is partially mounted with piezoelectric material and adhesive layer, subjected to an external force and applied voltage is studied. The charge equation of piezoelectric material is included in the study. The shape functions of one element of the entire beam are obtained by solving the equations of static equilibrium with nodal displacements of the element. Then, the finite element approach is adopted to set up the coupling equations of the motion of the entire beam and induced voltage on the piezoelectric material. To suppress the vibration of the entire beam, a resistor is inserted to connect two surfaces of the piezoelectric material. The Newmark’s scheme is adopted to analyze the behavior of the entire system. An external voltage apply at the actuator and an external force apply at the free end of the entire beam will be studied. The effects of the location, length and thickness of the piezoelectric material and thickness of the adhesive layer on deflection, torsion angle, collecting electric charge and the damping are investigated.
1.H. S. Tzou and G. C. Wang, “Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and viscoelastic actuator,” Computers and Structures, Vol.35, pp. 669-677, 1990.
2.H. S. Tzou, and C. I. Tseng, “Distributed Vibration Control and Identification of Coupled Elastic/Piezoelectric System: Finite Element Formulation and Application,” Mechanical Systems and Signal Processing, Vol. 5, No. 3, pp. 215-231, 1991.
3.S. K. Ha, C. Keilers, and F. K. Chang, “Finite element analysis of composite structures containing distributed piezoelectric sensors and actuators,” AIAA Journal, Vol.30, pp. 772-780, 1992.
4.J. Pan, C. H. Hansen, and S. D. Snyder, “A study of response of a simple supported beam to excitation by a piezoelectric actuator,” Journal of Intelligent Material Systems and Structures, Vol. 3, pp. 120-130, 1992.
5.M. C. Ray, K. M. Rao, and B. Samanta, “Exact solution for static analysis of an intelligent structure under cylindrical bending,” Computer and Structures, Vol. 47, No. 6, pp. 1031-1042, 1993.
6.H. Abramovich, and A. Livshits, “Dynamic behavior of cross-ply laminated beams with piezoelectric layers,” Computer Structures, Vol. 25, pp. 371-379, 1993.
7.S. Brooks and P. Heyliger, ”Static Behavior of Piezoelectric Laminates with Distributed and Patched Actuators,” Journal of Intelligent Material Systems and Structures 5(5), pp. 635-646, 1994.
8.S. M. Yang and Y. J. Lee, “Interaction of structure vibration and piezoelectric actuation,” Smart Materials and Structures 3(4), pp. 494-500, 1994.
9.M. D. Sciuva and U. Icardi, “Large deflection of adaptive multilayered Timoshenko beams,” Composite structures 31(1), pp. 49-60, 1995.
10.C. Q. Chen, X. M. Wang and Y. P. Shen, “Finite element approach of vibration control using self-sensing piezoelectric actuators,” Computers and Structures, Vol.60, No.3, pp. 505-512, 1996.
11.J. G. Smits, W. S. Choi, and A. Ballato, “Resonance and antiresonance of symmetric and asymmetric piezoelectric flexors,” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions, Vol. 44, No. 2, pp. 250-258, 1997.
12.X. Q. Peng, K. Y. Lam and G. R. Liu, “Active Vibration Control of Composite Beams with Piezoelectric: A finite Element Model with Third Order Theory,” Journal of Sound and Vibration 209, pp. 635-650, 1998.
13.Jing H. Hung, and Heng-I Yu, “Dynamic electromechanical response of piezoelectric plates as sensors or actuators,” Materials Letters, Vol. 45, pp. 70-80, 2000.
14.Huang Song-Jeng, “Mathematical modeling of the stress-strain state of adhesive layers in sandwich structures,” Mechanics of Composite Materials, Vol. 38, No. 2, pp. 161-182, 2002.
15.S. Narayanana, V. Balamuruganb, “Finite element modeling of piezolaminated smart structures for active vibration control with distributed sensors and actuators,” Journal of Sound and Vibration 262, pp. 529-562, 2003.
16.D. H. Ryu and K. W. Wang, “Analysis of interfacial stresses and actuation authorities induced by surface-bonded piezoelectric actuators on curved flexible beams,” Smart Materials and Structures, 13, pp. 753-761, 2004.
17.H. Antes, “Dynamic analyses of plane frames by integral equations for bars and Timoshenko beams,” Journal of Sound and Vibration 276, pp. 807-836, 2004.
18.Jian Ping Jiang, Dong Xu Li, “A new finite element model for piezothermoelastic composite beam,” Journal of Sound and Vibration 306, pp. 849-864, 2007.