| 研究生: |
蕭天賜 Hsiao, Tien-Ssu |
|---|---|
| 論文名稱: |
以數位訊號處理器為基礎之多功能控制平台的研製 Design and Implementation of A DSP-Based Versatile Control Platform |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 207 |
| 中文關鍵詞: | 被動能量法甩上 、LQR控制 、數位訊號處理器 、能量法甩上 、欠致動性系統 |
| 外文關鍵詞: | passivity-based, underactuated system, LQR, digital signal processor, energy-based |
| 相關次數: | 點閱:123 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在探討將數個典型的倒單擺機構整合成一個非線性控制實驗平台,控制器的實現是以數位訊號處理器(Digital Signal Processor, DSP)為基礎,目的是將整個控制平台模組化、小型化、低價化。如此一來,將可廣泛地利用此平台做為驗證不同控制法則之可行性及性能比較,甚至可擴充成為其它更複雜的非線性控制系統,以提供教學及研究之用。本論文實作部份係採用德州儀器公司所生產的定點式運算之數位訊號處理器,型號為TMS320F2812,利用其快速的運算能力和豐富的運動控制介面以及通訊介面,進而實現效能優越的數位控制器,同時搭配自行製作的週邊介面電路,以期達到本論文的的控制目標,例如「車與桿甩上控制」、「車與桿甩上平衡控制」、「車與桿於斜坡之平衡控制」、「車與蹺蹺板平衡控制」、「單擺型天車抗搖晃控制」等多項非線性控制功能。最後以模擬結果以及實驗結果來驗證本論文理論及實作之一致性。
This study is to develop a digital control platform that can carry out several well-know nonlinear control experiments. The implementation of the digital control system is based on a digital signal processor such that the system can be made in modulization and miniaturization with low cost. This platform can be use to verify different control schemes for education or research. Moreover, the mechanism is designed to be readily expandable to other complex nonlinear control systems. In this study, the Texas Instruments TMS320F2812 digital signal processor is used to implement the high performance digital controller with some designed peripheral circuits. This processor provides highly integrated solutions for this demanding control system. This control system can perform five challenging control tasks: balance control for the cart-pole system, swing up and balance control for the cart-pole system, balance control for the cart-pole system at the ramp, anti-sway control for the pendulum-type crane, and balance control for the cart-seesaw system. The experimental results and simulation results are given to demonstrate the effectiveness of the developed DSP-based control system.
[1] J. F. Schaefer and R. H. Cannon, “On the control of unstable mechanical systems,” in Automatic Remote Control III, Proceedings of the 3rd International Federation on Automatic Control (IFAC), Vol. 1 (6C. 1-6C. 13), 1967.
[2] J. Collado, R. Lozano, and I. Fantoni, “Cotrol of convey-crane based on passivity,” Proceedings of the American Control Conference, pp. 1260-1264, Chicago, Illinois, June 2000.
[3] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up control of inverted pendulum using pseudo-state feedback,” Journal of Systems and Control Engineering, Vol. 206, pp. 263-269, 1992.
[4] M. V. Subbotin, “Balancing an inverted pendulum on a seesaw,” Project Report, University of California, Santa Barbara, Spring 2004, http://www-ccec.ece.ucsb.edu/people/smith/nav_projects.html.
[5] M. W. Spong, “The swing up control problem for the Acrobot,” IEEE Control Systems Magazine, Vol. 15, Issue 1, pp. 49-55, Feb. 1995.
[6] I. Fantoni, R. Lozano, and M. W. Spong, “Passivity based control of Pendubot,” Proceedings of the American Control Conference, pp. 268-272, San Diego, California, June 1999.
[7] R. Olfati-Saber, “Global stabilization of a flat underactuated system: the inertia wheel pendulum,” Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, December, 2001.
[8] P. Dorato, C. Abdallah, and V. Cerone, Linear-Quadratic Control, Prentice Hall, Upper Saddle River, NY, 1995.
[9] I. Fantoni and R. Lozano, Non-Linear Control for Underactuated Mechanical Systems, Springer, London, 2002.
[10] M. Bugeja, “Non-linear swing-up and stabilizing control of an inverted pendulum system,” EUROCON 2003. Computer as a Tool. The IEEE Region 8, Vol. 2, pp. 437-441, Sep. 2003.
[11] A. Isidori, Nonlinear Control Systems: An Introduction, 3rd ed., Springer-Verlag, Berlin, 1995.
[12] B. Jakubczyk and W. Respondek, “On the linearization of control systems,” Bull. Acad. Polon. Sci. Math., 28:517-522, 1980.
[13] E. Hill, “A comparison of inverted pendulum swing-up control methods,” Project Report, University of California, Santa Barbara, Spring 2004,
http://www-ccec.ece.ucsb.edu/people/smith/nav_projec ts.html.
[14] J. Jägerhök, “Swinging and controlling the pendulum,” Project Report, University of California, Santa Barbara, June 2004,
http:// www-ccec.ece.ucsb.edu/people/smith/nav_projects. html.
[15] M. Kees, K. J. Burnham, A. Dunoyer, and J. H. Tabor, “Modelling and simulation considerations for an industrial crane,” International Conference on SIMULATION, Conference Publication No. 457, pp. 249-252, 1998.
[16] Y. Fang, E. Zergeroglu, W. E. Dixon, and D. M. Dawson, “Nonlinear coupling control laws for an overhead crane system,” Proceedings of the 2001 IEEE International Conference on Control Applications, pp. 639-644, Mexico, 2001.
[17] Y. S. Kim, H. S. Seo, and S. K. Sul, “A new anti-sway control scheme for trolley crane system,” Industry Applications Conference, 36th IAS Annual Meeting, Vol. 1, pp. 548-552, Sept. 2001.
[18] Y. S. Kim, H. Shim, H. Yoshihara, N. Fujioka, H. kasahara, and S. K. Sul, “A new vision-sensorless anti-sway control system for container cranes,” Industry Applications Conference, 38th IAS Annual Meeting, Vol. 1, pp. 262-569, Oct. 2003.
[19] W. Guo, D. Liu, J. Yi, and D. Zhao, “Passivity- based-control for double-pendulum-type overhead cranes,” TENCON IEEE Region 10 Conference, Vol. D, pp. 546-549, Nov. 2004.
[20] P. Hsu, “Dynamics and control design project offers taste of real world,” IEEE Control Systems Magazine, Vol. 12, No. 3, pp. 31-38, June 1992.
[21] C. H. Tsai, H. Y. Chung, and F. M. Yu, “Neuro-sliding mode control with its application to seesaw systems,” IEEE Transactions on Neural Networks, Vol. 15, No. 1, pp. 124-134, January 2004.
[22] M. L. Moore, J. T. Musacchio, and K. M. Passino, “Genetic adaptive control for an inverted wedge,” Proceedings of the American Control Conference, Vol. 1, pp. 400-404, 1999.
[23] 林鈺翔,「雙連桿倒單擺系統甩上與平衡控制」,國立成功大學工程科學系碩士論文,民國九十一年七月。
[24] 洪介仁,「車與桿倒單擺系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十二年七月。
[25] 凌朝雄,「慣性輪單擺之非線性控制」,國立成功大學工程科學系碩士論文,民國九十三年七月。
[26] 詹富強,「以數位信號處理器為基礎單板獨立旋轉型倒單擺甩上與平衡控制系統之實現」,國立成功大學工程科學系碩士論文,民國九十三年七月。
[27] 楊志偉,「以視覺伺服為基礎之倒單擺系統平衡控制」,國立成功大學工程科學系碩士論文,民國九十四年七月。
[28] S. H. żak, Systems and Control, Oxford Univeristy Press, NY, 2003.
[29] R. Ortega, A. Loria, P. J. Nicklasson, and H. S. Ramirez, Passivity- based Control of Euler-Lagrange Systems Mechanical, Electrical and Electromechanical Applications, Springer-Verlag, London, 1998.
[30] 辛俊光,「永磁式直流有刷馬達之參數自動鑑別系統」,國立成功大學航空太空工程學系碩士論文,民國八十六年六月。
[31] G. F. Franklin, J. D. Powell, and M. Workman, Digital Control of Dynamic Systems, 3rd ed., Addison-Wesley, Menlo Park, CA, 1998.
[32] S. J. Leon, Linear Algebra With Applications, 5th ed., Prentice Hall, Upper Saddle River, NJ, 1999.
[33] M. Cross, “Chaos on the Web Physics 161: Introduction to Chaos,” Sunday, March 26, 2000, http://www.cmp.caltech.edu/~mcc/Chaos_ Course/Outline.html.
[34] 徐業良,「機械設計課程教材」,元智大學機械工程學系最佳化設計實驗室,http://designer.mech.yzu.edu.tw/index.htm
[35] Quanser Consulting Inc., “Linear Motion Servo Plants,” Product Information Sheet L1, http://www.quanser.com.
[36] 李政翰,「模糊滑動模式控制器之設計及其在機電整合系統上之應用」,國立成功大學電機工程學系博士論文,民國九十二年七月。
[37] 曾錦豐,「模糊滑動模式及其在倒三角體系統之應用」,國立中央大學電機工程學系碩士論文,民國九十一年六月。
[38] 鄭啓駿,「倒單擺與線性感應馬達之創新整合型架構自動控制系統設計」,國立台灣大學電機工程學系碩士論文,民國九十二年六月。
[39] TMS320F281X Digital Signal Processors Data Manual, Texas Instrunents Inc., April 2001.
[40] H. K. Khalil, Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2002.