| 研究生: |
黃彥傑 Huang, Yan-Jie |
|---|---|
| 論文名稱: |
多孔性活性碳於燃燒後捕捉二氧化碳及參數最佳化之研究 The Capture of Post-Combustion Carbon Dioxide Using Porous Activated Carbon and Parameter Optimization |
| 指導教授: |
王偉成
Wang, Wei-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | 二氧化碳捕捉 、多孔性活性碳 、菱角殼 、酚醛塑料 、參數最佳化 |
| 外文關鍵詞: | CO2 capture, Active carbon, Post-combustion gas, Adsorption, Decarbonization, Aerodynamics |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Abergel, T., et al., Energy technology perspectives 2017: Catalysing energy technology transformations. 2017.
2. Stéphenne, K., Start-up of world's first commercial post-combustion coal fired CCS project: contribution of Shell Cansolv to SaskPower Boundary Dam ICCS project. Energy Procedia, 2014. 63: p. 6106-6110.
3. Stevenson, M., et al, NRG CO2NCEPT-Confirmation Of Novel Cost-effective Emerging Post-combustion Technology. 2016, NRG Energy, Inc., Houston, TX (United States).
4. Ishibashi, M., et al., Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy conversion and management, 1996. 37(6-8): p. 929-933.
5. Wang, L., et al., CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units. Industrial & Engineering Chemistry Research, 2013. 52(23): p. 7947-7955.
6. Liu, Z., et al., Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant. Industrial & engineering chemistry research, 2012. 51(21): p. 7355-7363.
7. IEA Fuel Combustion Carbon Emission Data Analysis. Available from: https://km.twenergy.org.tw/DocumentFree/reference_more?id=198.
8. Giordano, L., et al., Conceptual design of membrane-based pre-combustion CO2 capture process: Role of permeance and selectivity on performance and costs. Journal of Membrane Science, 2019. 575: p. 229-241.
9. Rainer, R., et al., Ullmann’s Encyclopedia of Industrial Chemistry: Gas Production, 2. Processes. Ullmann’s Encyclopedia of Industrial Chemistry, 2011. 10(14356007): p. o12_o01.
10. Chen, W.-H., et al, Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Applied Energy, 2020. 258: p. 114078.
11. Brigagão, G.V., et al., A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration. Renewable and Sustainable Energy Reviews, 2021. 138: p. 110686.
12. Luis, P., Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination, 2016. 380: p. 93-99.
13. Davarpanah, E., et al., CO2 capture on natural zeolite clinoptilolite: Effect of temperature and role of the adsorption sites. Journal of Environmental Management, 2020. 275: p. 111229.
14. Himeno, S. , et al., High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons. Journal of Chemical & Engineering Data, 2005. 50(2): p. 369-376.
15. Cavenati, S. , et al., Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. Journal of Chemical & Engineering Data, 2004. 49(4): p. 1095-1101.
16. Dunne, J., et al., Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites. Langmuir, 1996. 12(24): p. 5896-5904.
17. Huang, C.-M., et al., Development of post-combustion CO2 capture with CaO/CaCO3 looping in a bench scale plant. Energy Procedia, 2011. 4: p. 1268-1275.
18. Younas, M.,et al., Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 2020. 80: p. 100849.
19. Wang, H.,et al., Coffee grounds derived N enriched microporous activated carbons: Efficient adsorbent for post-combustion CO2 capture and conversion. Journal of Colloid and Interface Science, 2020. 578: p. 491-499.
20. Choi, S.W.,et al., Pollen-derived porous carbon by KOH activation: Effect of physicochemical structure on CO2 adsorption. Journal of CO2 Utilization, 2019. 29: p. 146-155.
21. Plaza, M. ,et al., Evaluation of a novel multibed heat-integrated vacuum and temperature swing adsorption post-combustion CO2 capture process. Applied Energy, 2019. 250: p. 916-925.
22. Serafin, J.,et al., Preparation of low-cost activated carbons from amazonian nutshells for CO2 storage. Biomass and Bioenergy, 2021. 144: p. 105925.
23. Ma, X.,et al., Ammonia-treated porous carbon derived from ZIF-8 for enhanced CO2 adsorption. Applied Surface Science, 2016. 369: p. 390-397.
24. Zhao, Y., et al., Novel porous carbon materials with ultrahigh nitrogen contents for selective CO 2 capture. Journal of Materials Chemistry, 2012. 22(37): p. 19726-19731.
25. Wan, L.,et al., Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture. Nanoscale, 2015. 7(15): p. 6534-6544.
26. Ma, X., et al., Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture. Applied Surface Science, 2018. 435: p. 494-502.
27. Mukhtar, A.,et al., A review on CO2 capture via nitrogen-doped porous polymers and catalytic conversion as a feedstock for fuels. Journal of Cleaner Production, 2020: p. 123999.
28. Chiang, Y.-C. , et al., Carbon dioxide adsorption on porous and functionalized activated carbon fibers. Applied Sciences, 2019. 9(10): p. 1977.
29. Coromina, H.M. , et al., Biomass-derived activated carbon with simultaneously enhanced CO 2 uptake for both pre and post combustion capture applications. Journal of Materials Chemistry A, 2016. 4(1): p. 280-289.
30. Salmasi, M., et al., Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent. International Journal of Environmental Science and Technology, 2013. 10(5): p. 1067-1074.
31. ASHRAFTALESH.,et al., Comparative study of carbon dioxide and methane adsorption by synthesized fine particles of SAPO-34 molecular sieve. 2010.
32. Wang, X., et al., Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society Reviews, 2014. 43(20): p. 7067-7098.
33. Ma, C.,et al., Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. Journal of Materials Chemistry, 2012. 22(18): p. 8911-8915.
34. Yang, M., et al., Adsorption of CO2 by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoxidation with KOH activation. Industrial & Engineering Chemistry Research, 2016. 55(3): p. 757-765.
35. Gholidoust,A.,et al., Enhancing CO2 adsorption via amine-impregnated activated carbon from oil sands coke. Energy & Fuels, 2017. 31(2): p. 1756-1763.
36. Li, Y.,et al., Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors. Journal of CO2 Utilization, 2018. 27: p. 204-216.
37. Zhang, D., et al., Solvent-Free Method Prepared a Sandwich-like Nanofibrous Membrane-Reinforced Polymer Electrolyte for High-Performance All-Solid-State Lithium Batteries. ACS applied materials & interfaces, 2020. 12(19): p. 21586-21595.
38. Xu, F., et al., Design and preparation of porous carbons from conjugated polymer precursors. Materials Today, 2017. 20(10): p. 629-656.
39. Li, Y., et al., Nitrogen-doped hierarchically porous carbon spheres for low concentration CO2 capture. Journal of Energy Chemistry, 2021. 53: p. 168-174.
40. Li, Y., et al., Highly microporous nitrogen-doped carbons from anthracite for effective CO2 capture and CO2/CH4 separation. Energy, 2020. 211: p. 118561.
41. Plaza, M., et al., Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chemical Engineering Journal, 2010. 163(1-2): p. 41-47.
42. Plaza, M., et al., Evaluation of the cyclic capacity of low-cost carbon adsorbents for post-combustion CO2 capture. Energy Procedia, 2011. 4: p. 1228-1234.
43. Singh, G., et al., Biomass derived porous carbon for CO2 capture. Carbon, 2019. 148: p. 164-186.
44. Rouquerol, J., et al., Adsorption by powders and porous solids: principles, methodology and applications. 2013: Academic press.
45. Mohamed, M.G., et al., Meso/Microporous Carbons from Conjugated Hyper-Crosslinked Polymers Based on Tetraphenylethene for High-Performance CO2 Capture and Supercapacitor. Molecules, 2021. 26(3): p. 738.
46. Xiao, J., et al., rGO/N-porous carbon composites for enhanced CO2 capture and energy storage performances. Journal of Alloys and Compounds, 2021. 857: p. 157534.
47. Pramanik, P., et al., High surface area porous carbon from cotton stalk agro-residue for CO2 adsorption and study of techno-economic viability of commercial production. Journal of CO2 Utilization, 2021. 45: p. 101450.
48. Li, J.,et al., Design of boron-doped mesoporous carbon materials for multifunctional applications: Dye adsorption and CO2 capture. Journal of Environmental Chemical Engineering, 2021. 9(3): p. 105250.
49. Singh, G., et al., Synthesis of high surface area and functionalized nanoporous biocarbons and their efficiency for CO2 capture and supercapacitors. Green Chemistry, 2021.
50. Ning, H., et al., Graphene-based semi-coke porous carbon with N-rich hierarchical sandwich-like structure for efficient separation of CO2/N2. Microporous and Mesoporous Materials, 2021. 311: p. 110700.
51. Singh, G., et al., Nanoporous activated biocarbons with high surface areas from alligator weed and their excellent performance for CO2 capture at both low and high pressures. Chemical Engineering Journal, 2021. 406: p. 126787.
校內:2026-10-15公開