| 研究生: |
沈烜右 Shen, Xuan-You |
|---|---|
| 論文名稱: |
不同官能基改質之星狀聚賴胺酸成膠性質探討 Hydrogelation of Star-shaped Poly(L-lysine) Polypeptides Modified with Different Functional Groups |
| 指導教授: |
詹正雄
Jan, Jeng-Shiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 水膠 、聚胺基酸 、星狀高分子 、分子間作用力 |
| 外文關鍵詞: | hydrogel, polypeptide, star polymer, intermolecular interaction |
| 相關次數: | 點閱:140 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以1,1,3,3-四甲基胍作為促進劑,使多元醇進行-胺基酸 N-羧酸酐開環聚合,成功地合成一系列三臂、四臂、六臂星狀聚胺基酸,去除保護基後加以改質,得到星狀聚賴胺酸-接枝-吲哚(PLL-g-Indo)、聚賴胺酸-接枝-苯環 (PLL-g-Phenyl)與聚穀胺酸-接枝-吲哚(PLG-g-Indo),並將其製備成水膠。利用不同臂數目、聚合度及改質之疏水基團種類,探討不同分子型態與各種分子間作用力對水膠形成之影響,並以各種儀器分析水膠之微觀結構與機械性質。以各個接枝聚胺基酸進行成膠濃度測試,可以得知水合能力、靜電排斥力、π-π堆疊、氫鍵作用力、陽離子-π作用力對於水膠之形成扮演相當重要的角色,並且發現星狀結構可以明顯地增強分子間作用力,而同時增加臂的數目與聚合度可以有效地降低成膠濃度,其中六臂聚賴胺酸31-接枝-吲哚0.27(6-armed PLL31-g-Indo0.27)具有本研究中最低的臨界成膠濃度(0.75 wt%)。X光繞射圖譜證明PLL-g-Indo與PLL-g-Phenyl的疏水基團堆疊是形成水膠的原因之一,另外,由掃描式電子顯微鏡與小角度X光散射實驗發現星狀PLL-g-Indo水膠中,高分子堆疊成膜狀與部分纖維結構,並且可以得知臂數目的增加會使相關長度(mesh size)變小、聚合度的增加會使相關長度變大。進一步利用流變儀分析水膠的強度與回復情形,發現星狀PLL-g-Indo水膠之黏彈性質與臂的數目有關,並且回復能力極佳。由本研究的結果說明了星狀接枝聚賴胺酸水膠性質的可調控性,可以藉由改變臂數目、聚合度與改質之疏水基團種類控制水膠之微觀結構與機械性質。
In this study, we reported the synthesis and hydrogelation of linear and star-shaped graft poly(L-lysine) and poly(L-glutamic acid) (PLL-g-Indo, PLL-g-Phenyl and PLG-g-Indo). Star-shaped polypeptides were synthesized by N-carboxyanhydrides (NCAs) ring opening polymerization (ROP) using polyols as the initiators with the aid of 1,1,3,3-tetramethylguanidine (TMG), followed by deprotection and partial side chain modification. Successful synthesis of these polypeptides was confirmed by 1H NMR and GPC analyses. Investigation of circular dichroism (CD) spectroscopy suggested that PLL-g-Indo and PLL-g-Phenyl mainly adopted random coil conformation. PLL-g-Indo exhibited better gelation ability than PLL-g-Phenyl and PLG-g-Indo, which indicated that the balance between hydration, charge repulsion, π-π stacking, cation-π interaction and hydrogen bonding dictated the physically entangled gelation of polypeptides. In addition, compared to linear ones, the star-shaped architecture could efficiently promote intermolecular interactions between polypeptide chains. CGC decreased as arm number and arm length increased simultaneously, and 6-armed PLL31-g-Indo0.27 exhibited the lowest CGC of 0.75 wt%. XRD profiles showed that π-π stacking was one of the reasons to form hydrogel, while SAXS patterns could be described by the Ornstein-Zernike equation. Besides, SEM images revealed that polypeptide chains formed continuous, membranous hydrogel networks. Furthermore, rheological properties and mesh sizes of these star-shaped graft polypeptide hydrogels were found to depend on arm number, arm length and composition.
1. Murphy, R.; Borase, T.; Payne, C.; O'Dwyer, J.; Cryan, S. A.; Heise, A., Hydrogels from amphiphilic star block copolypeptides. Rsc Advances 2016, 6 (28), 23370-23376.
2. Shen, Y.; Zhang, S. S.; Wan, Y. M.; Fu, W. X.; Li, Z. B., Hydrogels assembled from star-shaped polypeptides with a dendrimer as the core. Soft Matter 2015, 11 (15), 2945-2951.
3. Thornton, P. D.; Billah, S. M. R.; Cameron, N. R., Enzyme-Degradable Self-Assembled Hydrogels From Polyalanine-Modified Poly(ethylene glycol) Star Polymers. Macromol. Rapid Commun. 2013, 34 (3), 257-262.
4. Nelson, D. L.; Cox, M. M., Lehninger Principles of Biochemistry. Macmillan Higher Education: 2013.
5. Buxbaum, E., Fundamentals of Protein Structure and Function. Springer US: 2007.
6. Creighton, T. E., Proteins: Structures and Molecular Properties. W.H. Freeman: 1993.
7. Russell, P. J., IGenetics: A Molecular Approach. Benjamin Cummings: 2010.
8. Branden, C.; Tooze, J., Introduction to protein structure. Garland Pub.: 1991.
9. Petsko, G. A.; Ringe, D., Protein Structure and Function. New Science Press: 2004.
10. Schulz, G. E.; Schirmer, R. H., Principles of Protein Structure. Springer New York: 2013.
11. Kabsch, W.; Sander, C., Dictionary of protein secondary structure: pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983, 22 (12), 2577-2637.
12. Carlsen, A.; Lecommandoux, S., Self-assembly of polypeptide-based block copolymer amphiphiles. Current Opinion in Colloid & Interface Science 2009, 14 (5), 329-339.
13. Deming, T. J., Polypeptide materials: New synthetic methods and applications. Adv. Mater. 1997, 9 (4), 299-&.
14. Tirrell, D. A.; Fournier, M. J.; Mason, T. L., Genetic engineering of polymeric materials. MRS Bulletin 1991, 16 (7), 23-28.
15. Krejchi, M. T.; Atkins, E.; Waddon, A. J.; Fournier, M. J.; Mason, T. L.; Tirrell, D. A., Chemical sequence control of beta-sheet assembly in macromolecular crystals of periodic polypeptides. Science 1994, 265 (5177), 1427-1432.
16. Behrendt, R.; White, P.; Offer, J., Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 2016, 22 (1), 4-27.
17. Mitchell, A. R., Bruce Merrifield and solid-phase peptide synthesis: A historical assessment. Biopolymers 2008, 90 (3), 175-184.
18. Coin, I.; Beyermann, M.; Bienert, M., Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2007, 2 (12), 3247-3256.
19. Fischer, P. M.; Zheleva, D. I., Liquid-phase peptide synthesis on polyethylene glycol (PEG) supports using strategies based on the 9-fluorenylmethoxycarbonyl amino protecting group: Application of PEGylated peptides in biochemical assays. J. Pept. Sci. 2002, 8 (9), 529-542.
20. Bayer, E.; Mutter, M., Liquid phase synthesis of peptides. Nature 1972, 237 (5357), 512.
21. Deming, T., Peptide-Based Materials. Springer Berlin Heidelberg: 2012.
22. Habraken, G. J. M. Functional polypeptides obtained by living ring opening polymerizations of N-carboxyanhydrides. Citeseer, 2011.
23. Deng, C.; Wu, J. T.; Cheng, R.; Meng, F. H.; Klok, H. A.; Zhong, Z. Y., Functional polypeptide and hybrid materials: Precision synthesis via alpha-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci. 2014, 39 (2), 330-364.
24. Kricheldorf, H. R., Polypeptides and 100 years of chemistry of alpha-amino acid N-carboxyanhydrides. Angew. Chem.-Int. Edit. 2006, 45 (35), 5752-5784.
25. Deming, T. J., Synthesis of Side-Chain Modified Polypeptides. Chem. Rev. 2016, 116 (3), 786-808.
26. Leuchs, H.; Geiger, W., A new synthesis of serine. Berichte Der Deutschen Chemischen Gesellschaft 1906, 39, 2644-2649.
27. Leuchs, H.; Manasse, W., The isomerism of carboethoxy-glycylglycine ester. Berichte Der Deutschen Chemischen Gesellschaft 1907, 40, 3235-3249.
28. Leuchs, H.; Geiger, W., Concerning the anhydride on alpha-amino-N-carbonic acids and that of alpha-amino acids. Berichte Der Deutschen Chemischen Gesellschaft 1908, 41, 1721-1726.
29. Daly, W. H.; Poché, D., The preparation of N-carboxyanhydrides of α-amino acids using bis (trichloromethyl) carbonate. Tetrahedron Letters 1988, 29 (46), 5859-5862.
30. Poche, D. S.; Moore, M. J.; Bowles, J. L., An unconventional method for purifying the N-carboxyanhydride derivatives of gamma-alkyl-L-glutamates. Synth. Commun. 1999, 29 (5), 843-854.
31. Kramer, J. R.; Deming, T. J., General Method for Purification of alpha-Amino acid-N-carboxyanhydrides Using Flash Chromatography. Biomacromolecules 2010, 11 (12), 3668-3672.
32. Huang, J.; Heise, A., Stimuli responsive synthetic polypeptides derived from N-carboxyanhydride (NCA) polymerisation. Chem. Soc. Rev. 2013, 42 (17), 7373-7390.
33. Deming, T. J., Living polymerization of alpha-amino acid-N-carboxyanhydrides. J. Polym. Sci. Pol. Chem. 2000, 38 (17), 3011-3018.
34. Chan, B. A.; Xuan, S.; Horton, M.; Zhang, D., 1, 1, 3, 3-Tetramethylguanidine-promoted ring-opening polymerization of N-butyl N-carboxyanhydride using alcohol initiators. Macromolecules 2016, 49 (6), 2002-2012.
35. Chan, B. A.; Xuan, S. T.; Li, A.; Simpson, J. M.; Sternhagen, G. L.; Yu, T. Y.; Darvish, O. A.; Jiang, N. S.; Zhang, D. H., Polypeptoid polymers: Synthesis, characterization, and properties. Biopolymers 2018, 109 (1), 25.
36. Habraken, G. J.; Peeters, M.; Dietz, C. H.; Koning, C. E.; Heise, A., How controlled and versatile is N-carboxy anhydride (NCA) polymerization at 0 C? Effect of temperature on homo-, block-and graft (co) polymerization. Polym. Chem. 2010, 1 (4), 514-524.
37. Kricheldorf, H. R.; von Lossow, C.; Schwarz, G., Cyclic polypeptides by solvent-induced polymerizations of α-amino acid N-carboxyanhydrides. Macromolecules 2005, 38 (13), 5513-5518.
38. Deming, T. J., Facile synthesis of block copolypeptides of defined architecture. Nature 1997, 390 (6658), 386.
39. Deming, T. J., Amino acid derived nickelacycles: intermediates in nickel-mediated polypeptide synthesis. J. Am. Chem. Soc. 1998, 120 (17), 4240-4241.
40. Deming, T. J., Cobalt and iron initiators for the controlled polymerization of α-amino acid-N-carboxyanhydrides. Macromolecules 1999, 32 (13), 4500-4502.
41. Deming, T. J.; Curtin, S. A., Chain initiation efficiency in cobalt-and nickel-mediated polypeptide synthesis. J. Am. Chem. Soc. 2000, 122 (24), 5710-5717.
42. Deming, T. J., Methodologies for preparation of synthetic block copolypeptides: materials with future promise in drug delivery. Advanced drug delivery reviews 2002, 54 (8), 1145-1155.
43. Pattabiraman, V. R.; Bode, J. W., Rethinking amide bond synthesis. Nature 2011, 480 (7378), 471.
44. Xiong, X.-B.; Binkhathlan, Z.; Molavi, O.; Lavasanifar, A., Amphiphilic block co-polymers: preparation and application in nanodrug and gene delivery. Acta biomaterialia 2012, 8 (6), 2017-2033.
45. Buhleier, E.; Wehner, W.; Vogtle, F., Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis 1978, (2), 155-158.
46. Newkome, G.; Yao, Z.-Q.; Baker, G.; Gupta, V., Preparation of highly branched cascade molecules. J Org Chem 1985, 50, 2004-2006.
47. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A new class of polymers: starburst-dendritic macromolecules. Polymer Journal 1985, 17 (1), 117.
48. Sowinska, M.; Urbanczyk-Lipkowska, Z., Advances in the chemistry of dendrimers. New J. Chem. 2014, 38 (6), 2168-2203.
49. Svenson, S., Dendrimers as versatile platform in drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics 2009, 71 (3), 445-462.
50. Mintzer, M. A.; Grinstaff, M. W., Biomedical applications of dendrimers: a tutorial. Chem. Soc. Rev. 2011, 40 (1), 173-190.
51. Kesharwani, P.; Jain, K.; Jain, N. K., Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014, 39 (2), 268-307.
52. Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J. T.; An, Z. S.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G., Star Polymers. Chem. Rev. 2016, 116 (12), 6743-6836.
53. Wu, W.; Wang, W. G.; Li, J. S., Star polymers: Advances in biomedical applications. Prog. Polym. Sci. 2015, 46, 55-85.
54. Wang, W.; Zhang, L.; Liu, M.; Le, Y.; Lv, S.; Wang, J.; Chen, J.-F., Dual-responsive star-shaped polypeptides for drug delivery. RSC Advances 2016, 6 (8), 6368-6377.
55. Lam, S. J.; Wong, E. H.; O’Brien-Simpson, N. M.; Pantarat, N.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G., Bionano interaction study on antimicrobial star-shaped peptide polymer nanoparticles. ACS applied materials & interfaces 2016, 8 (49), 33446-33456.
56. Inoue, K., Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25 (4), 453-571.
57. Blencowe, A.; Tan, J. F.; Goh, T. K.; Qiao, G. G., Core cross-linked star polymers via controlled radical polymerisation. Polymer 2009, 50 (1), 5-32.
58. Kuckling, D.; Wycisk, A., Stimuli-responsive star polymers. J. Polym. Sci. Pol. Chem. 2013, 51 (14), 2980-2994.
59. Mei, L.; Jiang, Y. Y.; Feng, S. S., Star-shaped block polymers as a molecular biomaterial for nanomedicine development. Nanomedicine 2014, 9 (1), 9-12.
60. Byrne, M.; Murphy, R.; Kapetanakis, A.; Ramsey, J.; Cryan, S. A.; Heise, A., Star-Shaped Polypeptides: Synthesis and Opportunities for Delivery of Therapeutics. Macromol. Rapid Commun. 2015, 36 (21), 1862-1876.
61. Yang, D. P.; Oo, M.; Deen, G. R.; Li, Z. B. A.; Loh, X. J., Nano-Star-Shaped Polymers for Drug Delivery Applications. Macromol. Rapid Commun. 2017, 38 (21), 25.
62. Ko, D. Y.; Shinde, U. P.; Yeon, B.; Jeong, B., Recent progress of in situ formed gels for biomedical applications. Prog. Polym. Sci. 2013, 38 (3-4), 672-701.
63. Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Vermonden, T.; Hennink, W. E., Hydrogels in a historical perspective: From simple networks to smart materials. J. Control. Release 2014, 190, 254-273.
64. Annabi, N.; Tamayol, A.; Uquillas, J. A.; Akbari, M.; Bertassoni, L. E.; Cha, C.; Camci-Unal, G.; Dokmeci, M. R.; Peppas, N. A.; Khademhosseini, A., 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine. Adv. Mater. 2014, 26 (1), 85-124.
65. Calo, E.; Khutoryanskiy, V. V., Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252-267.
66. Vermonden, T.; Censi, R.; Hennink, W. E., Hydrogels for Protein Delivery. Chem. Rev. 2012, 112 (5), 2853-2888.
67. Wang, S. S. S.; Hsieh, P. L.; Chen, P. S.; Chen, Y. T.; Jan, J. S., Genipin-cross-linked poly(L-lysine)-based hydrogels: Synthesis, characterization, and drug encapsulation. Colloid Surf. B-Biointerfaces 2013, 111, 423-431.
68. Zhang, Y. X.; Chen, Y. F.; Shen, X. Y.; Hu, J. J.; Jan, J. S., Reduction- and pH-Sensitive lipoic acid-modified Poly(L-lysine) and polypeptide/silica hybrid hydrogels/nanogels. Polymer 2016, 86, 32-41.
69. Hou, S. S.; Hsu, Y. Y.; Lin, J. H.; Jan, J. S., Alkyl-poly(L-threonine)/Cyclodextrin Supramolecular Hydrogels with Different Molecular Assemblies and Gel Properties. ACS Macro Lett. 2016, 5 (11), 1201-1205.
70. Murphy, R.; Borase, T.; Payne, C.; O'Dwyer, J.; Cryan, S.-A.; Heise, A., Hydrogels from amphiphilic star block copolypeptides. RSC Advances 2016, 6 (28), 23370-23376.
71. Li, Y.; Cao, Y., The Physical Chemistry for the Self-assembly of Peptide Hydrogels. Chin. J. Polym. Sci. 2018, 36 (3), 366-378.
72. Rodriguez, L. M. D. L.; Hemar, Y.; Cornish, J.; Brimble, M. A., Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chem. Soc. Rev. 2016, 45 (17), 4797-4824.
73. Koetting, M. C.; Peters, J. T.; Steichen, S. D.; Peppas, N. A., Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. R-Rep. 2015, 93, 1-49.
74. Matanovic, M. R.; Kristl, J.; Grabnar, P. A., Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int. J. Pharm. 2014, 472 (1-2), 262-275.
75. Zhang, X. Z.; Wu, D. Q.; Chu, C. C., Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Biomaterials 2004, 25 (17), 3793-3805.
76. Salgado-Rodriguez, R.; Licea-Claverie, A.; Arndt, K. F., Random copolymers of N-isopropylacrylamide and methacrylic acid monomers with hydrophobic spacers: pH-tunable temperature sensitive materials. Eur. Polym. J. 2004, 40 (8), 1931-1946.
77. Singh, N. K.; Lee, D. S., In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J. Control. Release 2014, 193, 214-227.
78. DeForest, C. A.; Anseth, K. S., Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat. Chem. 2011, 3 (12), 925-931.
79. Hoffman, A. S., Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Advanced Drug Delivery Reviews 2013, 65 (1), 10-16.
80. Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 2001, 53 (3), 321-339.
81. Guvendiren, M.; Lu, H. D.; Burdick, J. A., Shear-thinning hydrogels for biomedical applications. Soft Matter 2012, 8 (2), 260-272.
82. Miyata, T.; Jikihara, A.; Nakamae, K.; Hoffman, A. S., Preparation of reversibly glucose-responsive hydrogels by covalent immobilization of lectin in polymer networks having pendant glucose. J. Biomater. Sci.-Polym. Ed. 2004, 15 (9), 1085-1098.
83. Li, H., Smart Hydrogel Modelling. Springer Berlin Heidelberg: 2010.
84. Benguigui, L.; Boue, F., Homogeneous and inhomogenous polyacrylamide gels as observed by small angle neutron scattering: A connection with elastic properties. The European Physical Journal B-Condensed Matter and Complex Systems 1999, 11 (3), 439-444.
85. Hirokawa, Y.; Okamoto, T.; Kimishima, K.; Jinnai, H.; Koizumi, S.; Aizawa, K.; Hashimoto, T., Sponge-like Heterogeneous Gels: Hierarchical Structures in Poly(N-isopropylacrylamide) Chemical Gels As Observed by Combined Scattering and Confocal Microscopy Method. Macromolecules 2008, 41 (21), 8210-8219.
86. Horkay, F.; Basser, P. J.; Hecht, A. M.; Geissler, E., Structural investigations of a neutralized polyelectrolyte gel and an associating neutral hydrogel. Polymer 2005, 46 (12), 4242-4247.
87. Singh, S. S.; Aswal, V. K.; Bohidar, H. B., Structural evolution of aging agar-gelatin co-hydrogels. Polymer 2009, 50 (23), 5589-5597.
88. Di Lorenzo, F.; Seiffert, S., Nanostructural heterogeneity in polymer networks and gels. Polym. Chem. 2015, 6 (31), 5515-5528.
89. Rosler, A.; Klok, H. A.; Hamley, I. W.; Castelletto, V.; Mykhaylyk, O. O., Nanoscale structure of poly(ethylene glycol) hybrid block copolymers containing amphiphilic beta-strand peptide sequences. Biomacromolecules 2003, 4 (4), 859-863.
90. Wade, L. G., Organic Chemistry. Prentice Hall PTR: 2011.
91. Striegel, A.; Yau, W. W.; Kirkland, J. J.; Bly, D. D., Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography. Wiley: 2009.
92. Uzawa, T.; Nishimura, C.; Akiyama, S.; Ishimori, K.; Takahashi, S.; Dyson, H. J.; Wright, P. E., Hierarchical folding mechanism of apomyoglobin revealed by ultra-fast H/D exchange coupled with 2D NMR. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (37), 13859-13864.
93. Forood, B.; Feliciano, E. J.; Nambiar, K. P., Stabilization of alpha-helical structures in short peptides via end capping. Proceedings of the National Academy of Sciences 1993, 90 (3), 838-842.
94. Bonduelle, C., Secondary structures of synthetic polypeptide polymers. Polym. Chem. 2018, 9 (13), 1517-1529.
95. Yan, S. F.; Zhang, X.; Zhang, K. X.; Di, H.; Feng, L.; Li, G. F.; Fang, J. J.; Cui, L.; Chen, X. S.; Yin, J. B., Injectable in situ forming poly(L-glutamic acid) hydrogels for cartilage tissue engineering. J. Mat. Chem. B 2016, 4 (5), 947-961.
96. Fan, Z. P.; Cheng, P.; Liu, M.; Li, D. C.; Liu, G. Q.; Zhao, Y. N.; Ding, Z.; Chen, F.; Wang, B. Q.; Tan, X. X.; Wang, Z. P.; Han, J., Poly(glutamic acid) hydrogels crosslinked via native chemical ligation. New J. Chem. 2017, 41 (16), 8656-8662.
97. Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1 (6), 2876-2890.
98. Takei, T.; Ikeda, K.; Ijima, H.; Kawakami, K., Fabrication of poly (vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Process Biochemistry 2011, 46 (2), 566-571.
99. Das, A., Studies on complex pi-pi and T-stacking features of imidazole and phenyl/p-halophenyl units in series of 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides and their carbonitrile derivatives: Role of halogens in tuning of conformation. J. Mol. Struct. 2017, 1147, 520-540.
100. Liu, Y.; Zhan, G. Z.; Zhong, X. H.; Yu, Y. F.; Gan, W. J., Effect of pi-pi stacking on the self-assembly of azomethine-type rod-coil liquid crystals. Liq. Cryst. 2011, 38 (8), 995-1006.
101. Shen, J.; Pang, J.; Kalwarczyk, T.; Hołyst, R.; Xin, X.; Xu, G.; Luan, X.; Yang, Y., Manipulation of multiple-responsive fluorescent supramolecular materials based on the inclusion complexation of cyclodextrins with Tyloxapol. Journal of Materials Chemistry C 2015, 3 (31), 8104-8113.
102. Breedveld, V.; Nowak, A. P.; Sato, J.; Deming, T. J.; Pine, D. J., Rheology of block copolypeptide solutions: Hydrogels with tunable properties. Macromolecules 2004, 37 (10), 3943-3953.