簡易檢索 / 詳目顯示

研究生: 吳聖擇
Wu, Seng-Ze
論文名稱: 用於無陽極鋰金屬電池的局部化高濃度電解質
Localized Highly-concentrated Electrolyte for Anode-Free Lithium Metal Batteries
指導教授: 鄧熙聖
Teng, Hsi-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 111
中文關鍵詞: 無陽極鋰金屬電池局部化高濃度電解質
外文關鍵詞: Anode-free lithium metal battery, localized high-concentration electrolyte
相關次數: 點閱:42下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著全球能源轉型的需求不斷增加,對於電動車輛和再生能源存儲的需求也日益攀升。隨著人工智能、5G技術和物聯網的發展,進一步推動了能源使用的增長,對高能量密度儲能技術的需求也日益迫切。目前,鋰離子電池技術的能量密度提升已經接近瓶頸,因此激發了諸多後鋰離子電池技術的出現。無陽極鋰金屬電池是最高能量密度的電池型態之一,因此對其的研究是相當重要的。
    為了解決無陽極鋰金屬電池中不均勻的鋰沉積所帶來的低循環壽命問題,本文選擇能在鋰金屬電池中表現出優異性能的局部化高濃度電解質進行研究。透過調整鋰鹽濃度作為實驗參數,對高、中、低三種不同濃度電解質進行了分析。實驗顯示了與文獻所預期的結果不同,中間濃度的電解質(5M LHCE)表現出了優於高濃度電解質(8M LHCE)的性能。透過XPS的分析發現,高濃度電解質的介面層產生了更多高度分解的無機成分,這些成分對介面層的穩定性不利,導致介面層不斷增厚。此外,表面分析還顯示,在高濃度電解質中溶劑分解增加,因此導致高濃度電解質中導離子的濃度隨循環逐漸減少。因此,5M LHCE不僅展現出更佳的鋰離子傳輸性質,還能促進鋰金屬的穩定循環。
    在後續的測試中,電解質5M LHCE在高達4.4V的截止電壓下以0.5C的高充放電速率穩定進行無陽極鋰金屬電池的循環。經過100圈循環後,該電池仍能保持60%以上的初始容量,並且初始容量接近190 mAh g^(-1),這顯示該電解質具備高能量密度和高功率密度。此外,在無陽極軟包電池中,該電解質能夠在0.5C的充放電速率下進行循環,在100圈後仍能保持70%以上的初始容量。

    This study addressed uneven lithium deposition in anode-free lithium metal batteries by investigating localized high-concentration electrolytes (LHCE). Surprisingly, the intermediate concentration electrolyte (5M LHCE) outperformed the higher concentration (8M LHCE). XPS analysis revealed that the higher-concentration electrolyte caused more decomposition in the interface layer, reducing stability and increasing thickness. Additionally, increased solvent decomposition in the higher-concentration electrolyte reduced ion conductivity with cycling. Consequently, 5M LHCE exhibited superior lithium-ion transport and stable cycling. In tests, 5M LHCE demonstrated stable cycling in an anode-free lithium metal battery at 4.4V and a 0.5C charging/discharging rate, maintaining over 60% of its initial capacity after 100 cycles, with an initial capacity close to 190 mAh g-1. In an anode-free pouch cell, it retained over 70% of its initial capacity after 100 cycles at the same rate.

    中文摘要 I 英文延伸摘要 II 致謝 XIV 目錄 XV 表目錄 XX 圖目錄 XXI 第一章 緒論 1 1.1 鋰電池的發展與介紹 1 1.2 鋰電池正極材料 3 1.2.1 層狀氧化物正極材料 4 1.2.1 尖晶石(spinel)結構 6 1.2.1 聚陰離子氧化物(polyanion oxides)結構 7 1.3 後鋰離子電池技術 8 1.3.1 鋰硫電池 9 1.3.2 鋰空氣電池 10 1.3.3 無陽極鋰金屬電池 13 1.4 鋰金屬電池的問題 14 1.4.1 電解質的反應 14 1.4.2 不均勻的鋰沉積 16 1.5 富無機成分的SEI層 20 1.6 有益的SEI成分 23 1.7 研究動機 27 第二章 理論說明與文獻回顧 29 2.1 局部高濃度電解質的相關文獻回顧 29 2.2 電解質成分的挑選 32 2.3 鋰電池相關測試理論說明 34 2.3.1 庫倫效率 34 2.3.2 導離子度 36 2.3.3 電化學阻抗頻譜儀 37 2.4 實驗方法與儀器原理介紹 39 2.5 實驗藥品與用品 39 2.6 實驗儀器設備 40 2.7 正極之極片製作 41 2.8 電解質/電解液配製方法 42 2.8.1 不同濃度的局部高濃度電解質 42 2.8.2 不同稀釋劑添加量的5M濃度局部高濃度電解質 42 2.9 鈕扣電池的組裝 43 2.10 軟包電池的組裝 43 2.11 電化學測試 44 2.11.1 導離子度 44 2.11.2 鋰離子遷移數 45 2.11.3 鋁腐蝕測試 46 2.11.4 電池循環放電性能測試 46 2.11.5 持壓電流測試 47 2.11.6 電化學阻抗頻譜儀測試 47 2.12 實驗分析儀器與裝置分析儀器原理介紹 47 2.12.1 掃描式電子顯微鏡 47 2.12.2 拉曼光譜分析 50 2.12.3 化學分析電子能譜 51 第三章 結果與討論 55 3.1 鋁腐蝕的抑制 56 3.2 無陽極電池循環性能 56 3.3 鋰循環可逆性 58 3.4 鋰金屬沉積型態 59 3.5 磷酸鐵鋰無陽極電池測試 60 3.6 鋰對稱電池測試 61 3.7 電解質溶劑化結構 63 3.8 鋰離子遷移數測試 64 3.9 介面層化學成分分析 66 3.10 稀釋劑含量的影響 70 3.11 高電位充放電測試 70 3.12 無陽極小型軟包測試 72 第四章 文獻比較 74 第五章 結論 75 參考資料 77

    1. Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P.W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W.W.L., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., Jotzo, F., Krug, T., Lasco, R., Lee, Y.-Y., Masson-Delmotte, V., Meinshausen, M., Mintenbeck, K., Mokssit, A., Otto, F.E.L., Pathak, M., Pirani, A., Poloczanska, E., Pörtner, H.-O., Revi, A., Roberts, D.C., Roy, J., Ruane, A.C., Skea, J., Shukla, P.R., Slade, R., Slangen, A., Sokona, Y., Sörensson, A.A., Tignor, M., van Vuuren, D., Wei, Y.-M., Winkler, H., Zhai, P., Zommers, Z., Hourcade, J.-C., Johnson, F.X., Pachauri, S., Simpson, N.P., Singh, C., Thomas, A., Totin, E., Alegría, A., Armour, K., Bednar-Friedl, B., Blok, K., Cissé, G., Dentener, F., Eriksen, S., Fischer, E., Garner, G., Guivarch, C., Haasnoot, M., Hansen, G., Hauser, M., Hawkins, E., Hermans, T., Kopp, R., Leprince-Ringuet, N., Lewis, J., Ley, D., Ludden, C., Niamir, L., Nicholls, Z., Some, S., Szopa, S., Trewin, B., van der Wijst, K.-I., Winter, G., Witting, M., Birt, A., Ha, M.: IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. (2023)
    2. The journey of an electrifying (r)evolution. Nat Commun. 12, (2021). https://doi.org/10.1038/s41467-021-24410-3
    3. Royal Swedish Academy of Sciences, T.: Press release: The Nobel Prize in Chemistry 2019. (2019)
    4. Frith, J.T., Lacey, M.J., Ulissi, U.: A non-academic perspective on the future of lithium-based batteries. Nat Commun. 14, 420 (2023). https://doi.org/10.1038/s41467-023-35933-2
    5. Placke, T., Kloepsch, R., Dühnen, S., Winter, M.: Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry. 21, 1939–1964 (2017). https://doi.org/10.1007/s10008-017-3610-7
    6. Manthiram, A.: A reflection on lithium-ion battery cathode chemistry. Nat Commun. 11, 1 (2020)
    7. Duffner, F., Kronemeyer, N., Tübke, J., Leker, J., Winter, M., Schmuch, R.: Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure, (2021)
    8. Manthiram, A., Fu, Y., Su, Y.S.: Challenges and prospects of lithium-sulfur batteries. Acc Chem Res. 46, 1125–1134 (2013). https://doi.org/10.1021/ar300179v
    9. Girishkumar, G., McCloskey, B., Luntz, A.C., Swanson, S., Wilcke, W.: Lithium-air battery: Promise and challenges. Journal of Physical Chemistry Letters. 1, 2193–2203 (2010). https://doi.org/10.1021/jz1005384
    10. Nanda, S., Gupta, A., Manthiram, A.: Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Adv Energy Mater. 11, (2021). https://doi.org/10.1002/aenm.202000804
    11. Goodenough, J.B., Kim, Y.: Challenges for Rechargeable Li Batteries. Chemistry of Materials. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
    12. Goodenough, J.B., Kim, Y.: Challenges for Rechargeable Li Batteries. Chemistry of Materials. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z
    13. Chen, X.R., Zhao, B.C., Yan, C., Zhang, Q.: Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials. 33, (2021). https://doi.org/10.1002/adma.202004128
    14. Ely, D.R., García, R.E.: Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes. J Electrochem Soc. 160, A662–A668 (2013). https://doi.org/10.1149/1.057304jes
    15. Liu, Y., Xu, X., Sadd, M., Kapitanova, O.O., Krivchenko, V.A., Ban, J., Wang, J., Jiao, X., Song, Z., Song, J., Xiong, S., Matic, A.: Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal. Advanced Science. 8, (2021). https://doi.org/10.1002/advs.202003301
    16. Chazalviel, J.-N.: Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A (Coll Park). 42, 15 (1990)
    17. Chen, X., Yao, Y., Yan, C., Zhang, R., Cheng, X., Zhang, Q.: A Diffusion‐‐Reaction Competition Mechanism to Tailor Lithium Deposition for Lithium‐Metal Batteries. Angewandte Chemie International Edition. 59, 7743–7747 (2020). https://doi.org/10.1002/anie.202000375
    18. Liu, Y., Xu, X., Kapitanova, O.O., Evdokimov, P. V., Song, Z., Matic, A., Xiong, S.: Electro-Chemo-Mechanical Modeling of Artificial Solid Electrolyte Interphase to Enable Uniform Electrodeposition of Lithium Metal Anodes. Adv Energy Mater. 12, (2022). https://doi.org/10.1002/aenm.202103589
    19. Sayavong, P., Zhang, W., Oyakhire, S.T., Boyle, D.T., Chen, Y., Kim, S.C., Vilá, R.A., Holmes, S.E., Kim, M.S., Bent, S.F., Bao, Z., Cui, Y.: Dissolution of the Solid Electrolyte Interphase and Its Effects on Lithium Metal Anode Cyclability. J Am Chem Soc. 145, 12342–12350 (2023). https://doi.org/10.1021/jacs.3c03195
    20. Zhang, Z., Li, Y., Xu, R., Zhou, W., Li, Y., Oyakhire, S.T., Wu, Y., Xu, J., Wang, H., Yu, Z., Boyle, D.T., Huang, W., Ye, Y., Chen, H., Wan, J., Bao, Z., Chiu, W., Cui, Y.: Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science (1979). 375, 66–70 (2022)
    21. Wang, W.W., Gu, Y., Yan, H., Li, S., He, J.W., Xu, H.Y., Wu, Q.H., Yan, J.W., Mao, B.W.: Evaluating Solid-Electrolyte Interphases for Lithium and Lithium-free Anodes from Nanoindentation Features. Chem. 6, 2728–2745 (2020). https://doi.org/10.1016/j.chempr.2020.07.014
    22. Fan, X., Ji, X., Han, F., Yue, J., Chen, J., Chen, L., Deng, T., Jiang, J., Wang, C.: Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci Adv. 4, (2018). https://doi.org/10.1126/sciadv.aau9245
    23. Shkrob, I.A., Wishart, J.F., Abraham, D.P.: What Makes Fluoroethylene Carbonate Different? Journal of Physical Chemistry C. 119, 14954–14964 (2015). https://doi.org/10.1021/acs.jpcc.5b03591
    24. Markevich, E., Salitra, G., Aurbach, D.: Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries. ACS Energy Lett. 2, 1337–1345 (2017). https://doi.org/10.1021/acsenergylett.7b00163
    25. Zhang, B., Metzger, M., Solchenbach, S., Payne, M., Meini, S., Gasteiger, H.A., Garsuch, A., Lucht, B.L.: Role of 1,3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation. Journal of Physical Chemistry C. 119, 11337–11348 (2015). https://doi.org/10.1021/acs.jpcc.5b00072
    26. Fang, M., Chen, J., Chen, B., Wang, J.: Salt-solvent synchro-constructed robust electrolyte-electrode interphase for high-voltage lithium metal batteries. J Mater Chem A Mater. 10, 19903–19913 (2022). https://doi.org/10.1039/d2ta02267b
    27. Zhang, Y., Zhong, Y., Wu, Z., Wang, B., Liang, S., Wang, H.: Solvent Molecule Cooperation Enhancing Lithium Metal Battery Performance at Both Electrodes. Angewandte Chemie - International Edition. 59, 7797–7802 (2020). https://doi.org/10.1002/anie.202000023
    28. Xu, G., Pang, C., Chen, B., Ma, J., Wang, X., Chai, J., Wang, Q., An, W., Zhou, X., Cui, G., Chen, L.: Prescribing Functional Additives for Treating the Poor Performances of High-Voltage (5 V-class) LiNi0.5Mn1.5O4/MCMB Li-Ion Batteries. Adv Energy Mater. 8, (2018). https://doi.org/10.1002/aenm.201701398
    29. Zhang, J., Zhang, H., Weng, S., Li, R., Lu, D., Deng, T., Zhang, S., Lv, L., Qi, J., Xiao, X., Fan, L., Geng, S., Wang, F., Chen, L., Noked, M., Wang, X., Fan, X.: Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat Commun. 14, (2023). https://doi.org/10.1038/s41467-023-37999-4
    30. Boyle, D.T., Huang, W., Wang, H., Li, Y., Chen, H., Yu, Z., Zhang, W., Bao, Z., Cui, Y.: Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat Energy. 6, 487–494 (2021). https://doi.org/10.1038/s41560-021-00787-9
    31. Designed Research; X, W.X.R.: Role of inner solvation sheath within salt-solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries. 117, (2010). https://doi.org/10.1073/pnas.2010852117/-/DCSupplemental
    32. Yamada, Y., Furukawa, K., Sodeyama, K., Kikuchi, K., Yaegashi, M., Tateyama, Y., Yamada, A.: Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J Am Chem Soc. 136, 5039–5046 (2014). https://doi.org/10.1021/ja412807w
    33. Zhou, Y., Su, M., Yu, X., Zhang, Y., Wang, J.G., Ren, X., Cao, R., Xu, W., Baer, D.R., Du, Y., Borodin, O., Wang, Y., Wang, X.L., Xu, K., Xu, Z., Wang, C., Zhu, Z.: Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery. Nat Nanotechnol. 15, 224–230 (2020). https://doi.org/10.1038/s41565-019-0618-4
    34. Yoshida, K., Nakamura, M., Kazue, Y., Tachikawa, N., Tsuzuki, S., Seki, S., Dokko, K., Watanabe, M.: Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J Am Chem Soc. 133, 13121–13129 (2011). https://doi.org/10.1021/ja203983r
    35. Liu, W., Li, J., Li, W., Xu, H., Zhang, C., Qiu, X.: Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte. Nat Commun. 11, (2020). https://doi.org/10.1038/s41467-020-17396-x
    36. Han, H.B., Zhou, S.S., Zhang, D.J., Feng, S.W., Li, L.F., Liu, K., Feng, W.F., Nie, J., Li, H., Huang, X.J., Armand, M., Zhou, Z. Bin: Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. J Power Sources. 196, 3623–3632 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.040
    37. Camacho-Forero, L.E., Balbuena, P.B.: Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode. Physical Chemistry Chemical Physics. 19, 30861–30873 (2017). https://doi.org/10.1039/c7cp06485c
    38. Yamada, Y., Chiang, C.H., Sodeyama, K., Wang, J., Tateyama, Y., Yamada, A.: Corrosion Prevention Mechanism of Aluminum Metal in Superconcentrated Electrolytes. ChemElectroChem. 2, 1687–1694 (2015). https://doi.org/10.1002/celc.201500235
    39. Xia, L., Xia, Y., Liu, Z.: Thiophene derivatives as novel functional additives for high-voltage LiCoO2 operations in lithium ion batteries. Electrochim Acta. 151, 429–436 (2015). https://doi.org/10.1016/j.electacta.2014.11.062
    40. Moon, J., Kim, D.O., Bekaert, L., Song, M., Chung, J., Lee, D., Hubin, A., Lim, J.: Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery. Nat Commun. 13, 4538 (2022). https://doi.org/10.1038/s41467-022-32192-5
    41. Hai, F., Yi, Y., Xiao, Z., Guo, J., Gao, X., Chen, W., Xue, W., Hua, W., Tang, W., Li, M.: A Low‐Cost, Fluorine‐Free Localized Highly Concentrated Electrolyte Toward Ultra‐High Loading Lithium Metal Batteries. Adv Energy Mater. 14, (2024). https://doi.org/10.1002/aenm.202304253
    42. Yoo, D., Yang, S., Yun, Y.S., Choi, J.H., Yoo, D., Kim, K.J., Choi, J.W.: Tuning the Electron Density of Aromatic Solvent for Stable Solid‐Electrolyte‐Interphase Layer in Carbonate‐Based Lithium Metal Batteries. Adv Energy Mater. 8, (2018). https://doi.org/10.1002/aenm.201802365
    43. Designed Research; X, J.-G.Z.C., Performed Research; X, D.L.C.: Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. 118, (2021). https://doi.org/10.1073/pnas.2020357118/-/DCSupplemental
    44. Nanda, S., Gupta, A., Manthiram, A.: Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries, (2021)
    45. Adams, B.D., Zheng, J., Ren, X., Xu, W., Zhang, J.G.: Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries. Adv Energy Mater. 8, (2018). https://doi.org/10.1002/aenm.201702097
    46. Zhao, Q., Stalin, S., Zhao, C.Z., Archer, L.A.: Designing solid-state electrolytes for safe, energy-dense batteries, (2020)
    47. Izutsu, K.: Electrochemistry in Nonaqueous Solutions. John Wiley & Sons (2002)
    48. Lazanas, A.C., Prodromidis, M.I.: Electrochemical Impedance Spectroscopy─A Tutorial, (2023)
    49. Qu, D., Ji, W., Qu, H.: Probing process kinetics in batteries with electrochemical impedance spectroscopy. Commun Mater. 3, (2022). https://doi.org/10.1038/s43246-022-00284-w
    50. Zugmann, S., Fleischmann, M., Amereller, M., Gschwind, R.M., Wiemhöfer, H.D., Gores, H.J.: Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim Acta. 56, 3926–3933 (2011). https://doi.org/10.1016/j.electacta.2011.02.025
    51. 汪建民: 材料分析. 中國材料科學學會, 新竹縣 (2014)
    52. Zhou, W., Zhong-Lin Wang: Scanning Microscopy for Nanotechnology Techniques and Applications. Springer science & business media (2007)
    53. Baddour-Hadjean, R., Pereira-Ramos, J.P.: Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev. 110, 1278–1319 (2010). https://doi.org/10.1021/cr800344k
    54. Yamada, Y., Yaegashi, M., Abe, T., Yamada, A.: A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chemical Communications. 49, 11194 (2013). https://doi.org/10.1039/c3cc46665e
    55. Park, E., Park, J., Lee, K., Zhao, Y., Zhou, T., Park, G., Jeong, M.-G., Choi, M., Yoo, D.-J., Jung, H.-G., Coskun, A., Choi, J.W.: Exploiting the Steric Effect and Low Dielectric Constant of 1,2-Dimethoxypropane for 4.3 V Lithium Metal Batteries. ACS Energy Lett. 8, 179–188 (2023). https://doi.org/10.1021/acsenergylett.2c02003
    56. Li, T., Zhang, X., Yao, N., Yao, Y., Hou, L., Chen, X., Zhou, M., Huang, J., Zhang, Q.: Stable Anion‐Derived Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie International Edition. 60, 22683–22687 (2021). https://doi.org/10.1002/anie.202107732
    57. Krishna, D.N.G., Philip, J.: Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Applied Surface Science Advances. 12, (2022). https://doi.org/10.1016/j.apsadv.2022.100332
    58. Li, Z., Yu, R., Weng, S., Zhang, Q., Wang, X., Guo, X.: Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nat Commun. 14, 482 (2023). https://doi.org/10.1038/s41467-023-35857-x
    59. Grissa, R., Fernandez, V., Fairley, N., Hamon, J., Stephant, N., Rolland, J., Bouchet, R., Lecuyer, M., Deschamps, M., Guyomard, D., Moreau, P.: XPS and SEM-EDX Study of Electrolyte Nature Effect on Li Electrode in Lithium Metal Batteries. ACS Appl Energy Mater. 1, 5694–5702 (2018). https://doi.org/10.1021/acsaem.8b01256
    60. Zhang, J., Zhang, H., Weng, S., Li, R., Lu, D., Deng, T., Zhang, S., Lv, L., Qi, J., Xiao, X., Fan, L., Geng, S., Wang, F., Chen, L., Noked, M., Wang, X., Fan, X.: Multifunctional solvent molecule design enables high-voltage Li-ion batteries. Nat Commun. 14, (2023). https://doi.org/10.1038/s41467-023-37999-4
    61. Zhang, X.Q., Chen, X., Hou, L.P., Li, B.Q., Cheng, X.B., Huang, J.Q., Zhang, Q.: Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries. ACS Energy Lett. 4, 411–416 (2019). https://doi.org/10.1021/acsenergylett.8b02376
    62. Huang, Y., Li, R., Weng, S., Zhang, H., Zhu, C., Lu, D., Sun, C., Huang, X., Deng, T., Fan, L., Chen, L., Wang, X., Fan, X.: Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ Sci. (2022). https://doi.org/10.1039/d2ee01756c
    63. Li, Y., Liu, M., Wang, K., Li, C., Lu, Y., Choudhary, A., Ottley, T., Bedrov, D., Xing, L., Li, W.: Single-Solvent-Based Electrolyte Enabling a High-Voltage Lithium-Metal Battery with Long Cycle Life. Adv Energy Mater. 13, (2023). https://doi.org/10.1002/aenm.202300918
    64. Eshetu, G.G., Diemant, T., Grugeon, S., Behm, R.J., Laruelle, S., Armand, M., Passerini, S.: In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes, (2016)
    65. Ren, X., Zou, L., Jiao, S., Mei, D., Engelhard, M.H., Li, Q., Lee, H., Niu, C., Adams, B.D., Wang, C., Liu, J., Zhang, J.-G., Xu, W.: High-Concentration Ether Electrolytes for Stable High-Voltage Lithium Metal Batteries. ACS Energy Lett. 4, 896–902 (2019). https://doi.org/10.1021/acsenergylett.9b00381
    66. Piao, Z., Xiao, P., Luo, R., Ma, J., Gao, R., Li, C., Tan, J., Yu, K., Zhou, G., Cheng, H.M.: Constructing a Stable Interface Layer by Tailoring Solvation Chemistry in Carbonate Electrolytes for High-Performance Lithium-Metal Batteries. Advanced Materials. 34, (2022). https://doi.org/10.1002/adma.202108400
    67. Yu, W., Yu, Z., Cui, Y., Bao, Z.: Degradation and Speciation of Li Salts during XPS Analysis for Battery Research. ACS Energy Lett. 7, 3270–3275 (2022). https://doi.org/10.1021/acsenergylett.2c01587
    68. Ren, X., Zou, L., Cao, X., Engelhard, M.H., Liu, W., Burton, S.D., Lee, H., Niu, C., Matthews, B.E., Zhu, Z., Wang, C., Arey, B.W., Xiao, J., Liu, J., Zhang, J.G., Xu, W.: Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule. 3, 1662–1676 (2019). https://doi.org/10.1016/j.joule.2019.05.006
    69. Chen, X., Li, H., Shen, X., Zhang, Q.: The Origin of the Reduced Reductive Stability of Ion–Solvent Complexes on Alkali and Alkaline Earth Metal Anodes. Angewandte Chemie. 130, 16885–16889 (2018). https://doi.org/10.1002/ange.201809203
    70. Li, W., Yao, H., Yan, K., Zheng, G., Liang, Z., Chiang, Y.M., Cui, Y.: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun. 6, (2015). https://doi.org/10.1038/ncomms8436
    71. Fang, C., Lu, B., Pawar, G., Zhang, M., Cheng, D., Chen, S., Ceja, M., Doux, J.-M., Musrock, H., Cai, M., Liaw, B., Meng, Y.S.: Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat Energy. 6, 987–994 (2021). https://doi.org/10.1038/s41560-021-00917-3
    72. Ruan, D., Tan, L., Chen, S., Fan, J., Nian, Q., Chen, L., Wang, Z., Ren, X.: Solvent versus Anion Chemistry: Unveiling the Structure-Dependent Reactivity in Tailoring Electrochemical Interphases for Lithium-Metal Batteries. JACS Au. 3, 953–963 (2023). https://doi.org/10.1021/jacsau.3c00035
    73. Yu, Z., Wang, H., Kong, X., Huang, W., Tsao, Y., Mackanic, D.G., Wang, K., Wang, X., Huang, W., Choudhury, S., Zheng, Y., Amanchukwu, C. V., Hung, S.T., Ma, Y., Lomeli, E.G., Qin, J., Cui, Y., Bao, Z.: Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat Energy. 5, 526–533 (2020). https://doi.org/10.1038/s41560-020-0634-5
    74. Zhang, G., Chang, J., Wang, L., Li, J., Wang, C., Wang, R., Shi, G., Yu, K., Huang, W., Zheng, H., Wu, T., Deng, Y., Lu, J.: A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat Commun. 14, (2023). https://doi.org/10.1038/s41467-023-36793-6
    75. Wu, L.Q., Li, Z., Fan, Z.Y., Li, K., Li, J., Huang, D., Li, A., Yang, Y., Xie, W., Zhao, Q.: Unveiling the Role of Fluorination in Hexacyclic Coordinated Ether Electrolytes for High-Voltage Lithium Metal Batteries. J Am Chem Soc. 146, 5964–5976 (2024). https://doi.org/10.1021/jacs.3c11798

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE