簡易檢索 / 詳目顯示

研究生: 陳政雄
Chen, Cheng-Hsiung
論文名稱: 韌帶非線性之胸腰椎有限元素分析
A finite element study of the biomechanical behavior of the nonlinear ligamentous thoracic and lumbar spine
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 146
中文關鍵詞: 胸椎腰椎脊椎韌帶有限元素
外文關鍵詞: ligament, finite element, Python, thoracic, lumbar, spine
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二十世紀末,先進的科技帶領生物力學重大的突破。其中最明顯的好處是數值分析的進步,可應用於實體的數值模擬可以得到實驗難以測量的詳細數據。
    之前許多的研究在各樣的問題與領域上分析過數個FSU(功能性脊椎單元),也得到良好的結果。然而這些結果很難整合至一個完整的脊椎模型,因為每個研究建立模型的方式差異性很大,尤其是早期的研究受限於設備只能基於理想化與簡單化之幾何。
    本研究用著名的有限元素法來模擬人體胸、腰部份的脊椎(T1~L5),並算出每個FSU之相對運動與每個椎體之最大應力。本有限模型採用獨特的半自動法從電腦斷層掃瞄建立真實的幾何人體脊椎(不包括肋骨及頸椎),包括小面關節接觸反應及可程式化的非線性韌帶。
    其數值分析的結果經過實驗數據驗證與收歛性分析。從結論來看,分析整個脊椎的可能性在本研究可得到證實。

    In the late twenty century, the modern technology has led the researches of biomechanics to a great leap forward. The obvious advantages are the improvements of numerical method, which could be used for simulating the physical objects and calculating the detailed information beyond experiments.
    Numerous studies have analyzed the several FSU (functional spine unit) in various issues and fields, and excellent results have been obtained. Nevertheless, their results are hardly integrated into one completed spine model due to the diverse modeling methods. Even the early study limited by facility could only base on the idealized and simplified geometric.
    This study uses the notable finite element method to simulate the human spine from thoracic to lumbar (T1~L5), and investigates the relative deformation of each FSU and maximum stress of the each vertebra. This finite element model adopts the distinct semiautomatic modeling method to build the truly accurate geometrical human spine from CT scan (not including the ribs and cervical) and contains the facets contact interactions and the programmable nonlinear ligaments. The numerical results are confirmed by the validation and convergence test. In the conclusion, the feasibility of analyzing the entire spine could be verified by this study.

    ABSTRACT.............................................................I ACKNOWLEDGEMENTS....................................................II TABLE OF CONTENTS..................................................III LIST OF TABLES.......................................................V TABLE OF FIGURES....................................................VI ANNOTATIONS.........................................................IX CHAPTER 1. INTRODUCTION..............................................1 1.1. THE BRIEF REVIEW OF THE BIOMECHANICS ABOUT SPINE................1 1.2. OVERVIEW OF THE ANATOMICAL TERMINOLOGY..........................1 1.3. OVERVIEW OF THE ANATOMY OF THE SPINE............................3 1.4. THE FUNDAMENTAL PROPERTIES OF THE SPINE.........................4 CHAPTER 2. ACKNOWLEDGES OF SPINE MODEL...............................7 2.1. THE INDIVIDUAL VERTEBRA.........................................7 2.1.1. The contact in the facet joints...............................8 2.1.2. The materials and properties of the bony structure...........10 2.2. THE INTER-VERTEBRAL DISC (IVD).................................15 2.3. THE SPINAL LIGAMENTS...........................................19 CHAPTER 3. MODELING THE FE SPINE....................................27 3.1. PREFACE........................................................27 3.2. THE SPECIMEN PROCESS...........................................31 3.3. CT PHOTOS PROCESS IN MEDICAL SOFTWARE..........................33 3.4. FINITE ELEMENT PRE-PROCESSOR...................................37 3.4.1. Import the STL files to Patran2005...........................38 3.4.2. Mesh-On-Mesh.................................................39 3.4.3. Build the elements...........................................43 3.4.4. Overview the components......................................46 3.5. THE MATERIALS..................................................48 3.5.1. The properties...............................................50 3.5.2. Boundary condition...........................................52 3.6. LOADING AND DISPLACEMENT PROTOCOL..............................53 3.7. COMPUTE THE MOTION ROTATION ANGLE..............................56 CHAPTER 4. CONVERGENCE AND VALIDATION...............................58 4.1. PREFACE........................................................58 4.2. CONVERGENCE....................................................59 4.2.1. Finite element models........................................59 4.2.2. Boundary condition in convergence test.......................61 4.2.3. Convergence results..........................................61 4.3. VALIDATION.....................................................65 CHAPTER 5. NUMERICAL RESULTS........................................70 5.1. INTRODUCE......................................................70 5.2. RESPONSE OF MOTIONS............................................71 5.2.1. Preload......................................................72 5.2.2. Extension....................................................75 5.2.3. Flexion......................................................79 5.2.4. Lateral......................................................83 5.2.5. Rotation.....................................................87 5.2.6. The motion figures...........................................91 5.3. VIBRATION MODES................................................96 CHAPTER 6. CONCLUSIONS AND SUGGESTIONS..............................98 6.1. CONCLUSIONS....................................................98 6.1.1. What this study contributes..................................98 6.1.2. The results of analysis......................................99 6.2. SUGGESTIONS...................................................100 6.2.1. Further works...............................................100 6.2.2. Hardware and software of facility...........................101 REFERENCES.........................................................103 APPENDIX 1 ABAQUS INPUT FILE.......................................108 APPENDIX 2 ABAQUS USER MATERIAL SUBROUTINE “UMAT.FOR”............114 APPENDIX 3 ABAQUS PYTHON SCRIPTS FILE “GETRELATIVEROTATION.PY”...116 APPENDIX 4 LOAD SCALE VERSUS DEGREES IN VARIOUS MOTIONS............121 BIOGRAPHY..........................................................146

    [1] White III, A. A., and Panjabi, M.M.: Clinical Biomechanics of the spine, 1990.
    [2] Tittel, K. Beschreibende und funktionelle: Anatomie des Menschen. 8. Ed. Jena, VEB Gustav-Fischer Verlag, 1990.
    [3] Mow, V., and Hayes, W. C.: Basic orthopaedic biomechanics, New York: Raven press Ltd, 1991.
    [4] Gray and Henry: Gray’s anatomy, New York, 1917.
    [5] Gregersen, G. G., and Lucas, D. B.: An in vivo study of the axial rotation of the human thoracolumbar spine, J. Bone Joint Surg., 49A:247, 1967.
    [6] Sharma, M., Langrana, N.A., and Rodriguez, J.: Role of ligaments and facets in lumbar spinal stability, Spine, Vol. 20, No. 8, pp. 887-900, 1995.
    [7] Adams, M. A., and Hutton, W. C.: The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces, The Journal of Bone and Joint Surgery, Vol. 62-B, No. 3, pp. 368-362, 1980.
    [8] Zander, T., Rohlmann, A., Klockner, C., and Bergmann, G.: Influence of graded facetectomy and laminectomy on spinal biomechanics, European Spine Journal, Vol. 12, No. 4, pp. 427-434, 2003.
    [9] Sharma, M., Langrana, N.A., and Rodriguez, J.: Modeling of facet articulation as a nonlinear moving contact problem: sensitivity study on lumbar facet response, Journal of Biomechanical Engineering, Vol. 120, pp. 118-125, 1998.
    [10] Shirazi-Adl, A.: Finite element evaluation of contact loads on facets of an L2-L3 lumbar segment in complex loads, Spine, Vol. 16, No. 5, pp. 533-541, 1991.
    [11] Shirazi-Adl, A.: Nonlinear stress analysis of the whole lumbar spine in torsion– mechanics of facet articulation, Journal of Biomechanics, Vol. 27, No. 3, pp.289-299, 1994.
    [12] Eberlein R., Holzapfel G. A., and Schulze-Bauer C. A. J.: An anisotropic model for annulus tissue and enhanced finite element analyses of intact lumbar disc bodies. Comput Meth Biomech Biomed Eng, Vol.4, pp.209-230, 2001.
    [13] Panjabi, M.M., Oxland, T., Takata, K., Goel, V., Duranceau, J., and Krag, M.: Articular facets of the human spine, quantitative three-dimensional anatomy, Spine, Vol. 18, No. 10, pp. 1298-1310, 1993.
    [14] Polikeit, A: Finite element analysis of the lumbar spine: Clinical application. Inaugural dissertation, University of Bern, 2002.
    [15] Guilhem Denoziere: Numerical modeling of a ligamentous lumbar motion segment. M.D. dissertation, pp.56 para.2, Georgia I.T., 2004.
    [16] Nordin, M., and Frankel, V. H.: Basic Biomechanics of the Musculoskeletal System. Lippincott Williams and Wilkins, Baltimore, 2001.
    [17] Silva, M. J., Wang, C., Keaveny, T. M., and Hayes, W. C.: Direct and computed tomography thickness measurements of he human, lumbar vertebral shell and endplate, Bone, Vol. 15, No. 4, pp. 409-414, 1994.
    [18] Gibson, L. J.: The mechanical behaviour of cancellous bone. J. Biomechanics 18, 317-328, 1985.
    [19] Gibson, L. J., and Ashby, M. F.: Cellular solids structure & properties. Pergamon Press, Oxford, UK, 1988.
    [20] Mansat, P., Barea, C., Hobatho, MC, Darmana, R., and Mansat, M.: Anatomic variation of the mechanical properties of the glenoid. J. Shoulder Elbow Surg. 7, 109-115, 1998.
    [21] Frich, L. H., Jensen, N. C., Odgaard, A., Pedersen, C. M., Sojbjerg, J. O., and Dalstra, M.: Bone strength and material properties of the glenoid. J. Shoulder Elbow Surg.; 6: 97-104, 1997.
    [22] Newitt, D. C.: In Vivo Assessment of Architecture and Micro-Finite Element Analysis Derived Indices of Mechanical Properties of Trabecular Bone in the Radius. Osteoporos Int, 136–17, 2002.
    [23] Sanjay, G., and Prosenjit, D.: Bone geometry and mechanical properties of the human scapula using computed tomography data. Trends Biomater. Artif. Organs, Vol.17, 61-70, 2004.
    [24] Sanjay, G., H. H. Bayraktar, J. C. Fox, T. M. Keaveny, and P. Papadopoulos: Constitutive Modeling and Algorithmic Implementation of a Plasticity-like Model for Trabecular Bone Structures. Comput. Mech. Vol.40 pp.61-72, 2007.
    [25] Bell, et al.: Variation in strength of vertebrae with age and their relation to osteoporosis. Calcif. Tissue. Res., 1:75, 1967.
    [26] Balasubramanian, K., Ranu, H. S., and King, A. I.: Vertebral response to laminectomy, J. Biomech., 12:813, 1979.
    [27] Hakim, N.S., and King, A.I.: A three dimensional finite element dynamic response analysis of a vertebra with experimental verification, J. Biomech., 12:277, 1979.
    [28] Cook, R.D., Malkus, D.S., Plesha, M.E., and Witt, R.J.: Concepts and applications of finite element analysis, fourth edition. John Wiley & Sons, New York, 2002.
    [29] Natarajan R.N., and Andersson, G.B.J.: Modeling the annular incision in a herniated lumbar intervertebral disc to study its effect on disc stability. Computers Structures, Vol.64, No.5-6, pp.1291-1297, 1997.
    [30] Pitzen, T., Geisler, F.H., Matthis, D., Storz, H.M., Pedersen, K., and Steudel, W.I.: The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment. Eur Spine J, Vol.10, pp.23-29, 2001.
    [31] Hirsch, C.: The reaction of intervertebral discs to compression forces. J. Bone Joint Surg., 37A:1188, 1955.
    [32] Baroud, G., Nemes, J., Heini, P., and Steffen, T.: Load shift of the intervertebral disc after a vertebroplasty: a finite element study. European Spine Journal, Vol.12, No.4, pp.421-426, 2003.
    [33] Wilcox, R. K., Allen, D. J., Hall, R. M., Limb, D., Barton, D. C., and Dickson, R. A.: A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur Spine J, Vol.13 pp.481-488, 2004.
    [34] Gwanseob Shin: Viscoelastic responses of the lumbar spine during prolonged stooping. Ph.D. dissertation, NCSU, USA, 2005.
    [35] Sairyo, K., Goel, V.K., Masuda, A., Vishnubhotla, S, Faizan, A, Biyani, A., Ebraheim, N, Yonekura, D, Murakami, R. I. and Terai T.: Three-dimensional finite element analysis of the pediatric lumbar spine. Eur Spine J, V15 pp.923-929, 2006.
    [36] Rohlmann, A., Burra, N.K., Zander, T., Bergmann, G.: Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine. Eur Spine J, 2007.
    [37] Nachemson, A., Morris, J. M.: In vivo measurements of intradiscal pressure. J. Bone Joint Surg., 46:1077, 1964.
    [38] Brinckmann, P., and Horst, M.: The influence of vertebral body fracture, intradiscal injection, and partial discectomy on the radial bulge and height of human lumbar discs. Spine, Vol.10(2), pp.138, 1985.
    [39] Reuber, M., Schultz, A., Denis, F., and Spencer, D.: Bulging of lumbar intervertebral disks. Journal of Biomech. Eng., Vol.104(3), pp.187, 1982.
    [40] Marchand, F. and Ahmed, A.: Investigation of the laminate structure of lumbar disc annulus fibrosus. Spine, Vol.15, pp.402-10, 1990.
    [41] Shirazi-Adl, A., Shrivastava, C., Ahmed, M.: Stress analysis of the lumbar disc-body unit in compression, a three-dimensional nonlinear finite element study, Spine, Vol. 9, No. 2, pp. 120-134, 1984.
    [42] Shah, J.S., Jayson, M.I.V., Hampson, W.G.J.: Low tension studies of collagen fibers from ligaments of the human spine. Ann Rheum Dis, Vol.36:139-148, 1977.
    [43] Chazal, J., Tanguy, A., Bourges, M., Gaurel, G., Escande, G, Guillot, M., Vanneuville, G.: Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. Journal of Biomech., vol.18(3), pp.167-176, 1985.
    [44] Martin., R. B., Burr, D. B., Sharkey, N. A.: Skeletal Tissue Mechanics. Springer, New York, 1998.
    [45] Shirazi-Adl, S.A., Ahmed, A.M., Shrivastava, S.C.: A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. Journal of Biomech., Vol.19, pp.331-350, 1986.
    [46] Naira H.C.K.: Computational analysis of the time-dependent biomechanical behavior of the lumbar spine. Ph.D. thesis, Ohio State University, USA, 2004.
    [47] Goel, V.K., Park, H., Kong, W.: Investigation of vibration characteristics of ligamentous lumbar spine using the finite element approach. Journal of Biomechanical Engineering, Vol.116, pp.377-383, 1994.
    [48] Lu, Y.M., Hutton, W.C., Gharpuray, V.M.: Do bending, twisting, and diurnal fluid changes in the disc affect the propensity to prolapse? A viscoelastic finite element model. Spine Vol.21, pp.2570-2579, 1996.
    [49] ABAQUS, 6.6-2. HKS, Pawtucket, RI, USA, 2007.
    [50] Galbusera, F., Fantigrossi, A., Raimondi, M.T., Assietti, R., Sassi, M. and Fornari, M.: Biomechanics of the C5-C6 spinal unit before and after placement of a disc prosthesis. Biomechan Model Mechanobiol, Vol.5, pp.253-261, 2006.
    [51] Wayne Z. Kong and Vijay K. Goel: Ability of the Finite Element Models to Predict Response of the Human Spine to Sinusoidal Vertical Vibration. SPINE Vol.28, No.17, pp.1961-1967, 2003.
    [52] Manabu Goto, N. Kawakami, H. Azegami, Y. Matsuyama, K. Takeuchi, and R. Sasaoka: Buckling and Bone Modeling As Factors in the Development of Idiopathic Scoliosis. Spine Vol.28, No.4, pp.364-371, 2003.
    [53] Guido van Rossum: Python source distribution. Python Foundation, 1991.
    [54] ABAQUS Online Documentation: Version 6.6-1, ABAQUS, Inc. Copyright 2006.
    [55] Markolf K.L.: Deformation of the thoracolumbar intervertebral joints in response to external loads: A biomechanical study using autopsy material. J Bone Joint Surg [Am] Vol.54, pp.511-533, 1972.
    [56] Kakol, W., Lodygowski, T., Ogurkowska, M.B., Wierszycki, M.: Are we able to support medical diagnosis or rehabilitation of human vertebra by numerical simulation, CMM-2003 Conference on Computer Methods in Mechanics, June 3-6, 2003, Gliwice, Poland, 2003.
    [57] ScanIP+, ScanCAD+ and ScanFE+: Simpleware, 2007.

    下載圖示 校內:立即公開
    校外:2007-07-03公開
    QR CODE