簡易檢索 / 詳目顯示

研究生: 許家瑋
Hsu, Chia-Wei
論文名稱: 研究Eps8參與在腫瘤內巨噬細胞聚集與促進腫瘤形成
Participation of Eps8 in tumor macrophage recruitment and tumor formation
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 52
中文關鍵詞: 大腸癌Eps8SDF-1αLPS腫瘤相關巨噬細胞
外文關鍵詞: colorectal cancer, Eps8, SDF-1α, LPS, tumor-associated macrophages
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腫瘤不僅有不正常增生的腫瘤細胞,還包含多種腫瘤周邊細胞,例如:纖維細胞和巨噬細胞。腫瘤相關巨噬細胞已經被發現會促進腫瘤的進程。而巨噬細胞會依據其腫瘤微環境刺激而從M1型改變成M2型。現今對於腫瘤微環境中刺激巨噬細胞極化的因子還仍有許多未知。因此,了解腫瘤微環境中的刺激因子對於巨噬細胞的極化表現是重要的。在我們先前的研究指出在巨噬細胞中,LPS刺激下,Eps8藉由促進TLR4-MyD88結合而誘導的吞噬作用,Eps8在巨噬細胞朝向M1型極化的過程扮演重要的角色。然而,近年來的研究指出:腫瘤細胞藉由SDF-1α/CXCR4聚集巨噬細胞並促使巨噬細胞朝向M2型極化。因此,在腫瘤相關巨噬細胞中,SDF-1α/CXCR4對於多種的腫瘤進程是相當重要的,而Eps8可能參與調控巨噬細胞極化的進行。在本篇研究中,我們發現在巨噬細胞中SDF-1α會抑制LPS誘導的COX2與iNOS表現,而LPS也會抑制SDF-1α誘導的AKT與ERK活化。再者,SDF-1α也會抑制LPS誘導的tnf-α與il-1β表現。這個結果指出活化CXCR4可以干擾TLR4誘導巨噬細胞朝向M1型極化。另一方面,我們研究AOM/DSS-誘發大腸癌的小鼠模型,我們發現,與野生型小鼠比較,在Eps8轉殖基因小鼠中有較多的腫瘤形成與較多的巨噬細胞聚集在腫瘤之中。此外,我們也在小鼠大腸癌原位模型觀察到Eps8轉殖基因鼠中,有較高比例的腫瘤轉移現象與較多巨噬細胞聚集在腫瘤之中。從以上結果得知,Eps8可能在大腸癌的腫瘤微環境與巨噬細胞中促進腫瘤進展扮演重要的角色。

    Tumor contains not only the abnormal growing cancer cells but also the surrounding stromal cells, such as fibroblasts and macrophages. The tumor-associated macrophages (TAMs) have been implicated in the promoting tumor progression. The polarity of macrophages changed from M1- toward M2-type depends on the cue present in the tumor microenvironment (TME). Currently, the cellular component(s) that respond to the stimulation exerted from TME in macrophages remains largely unknown. Our previous study reveals that Eps8 (epidermal growth factor receptor pathway substrate 8) plays a crucial role in LPS-stimulated phagocytosis in macrophages via interacting with TLR4 and facilitating TLR4-MyD88 association, suggesting that Eps8 may plays a role in promoting M1-type macrophages. In recent study, tumor cells may recruit macrophage and promote M2-type polarization via CXCR4/SDF-1α axis. Given that SDF-1α/CXCR4 axis in TAM is important for tumor progression in a variety of cancer cells, Eps8 might be the downstream molecule regulating the polarity of macrophages. In this study, we observed that LPS-induced iNOS and COX2 were suppressed by SDF-1α in an Eps8-dependent manner. Vice versa, LPS inhibits SDF-1α-induced activation of AKT and ERK in macrophages. Furthermore, the LPS-induced mRNA expression of tnf-α and il-1β was also decreased by SDF-1α, suggesting that activated CXCR4 might interfere TLR4-induced M1-type macrophage polarity. In AOM/DSS-induced colon cancer model, we found that there are more tumor nodules and TAMs in Eps8 transgenic mice than in wild type mice. In addition, in mouse orthotropic colorectal cancer model, we found that there are higher percentage of mice with metastasis and higher number of tumor macrophages in Eps8 transgenic mice than in wild type mice. In conclusion, macrophage Eps8 plays a crucial role in promoting cancer progression.

    Acknowledge I Abstract II Abstract in Chinese IV Contents VI Abbreviations IX List of Tables X List of Figures XI 1. Introduction 1 1.1 Colorectal cancer 1 1.2 Tumor microenvironment 1 1.3 Tumor-associated macrophage 2 1.4 Eps8 4 1.5 TLR4 signaling 4 1.6 CXCR4 signaling 5 1.7 Specific aims 6 2. Materials and Experimental procedures 7 2.1 Reagents and Antibody 7 2.2 Cell culture 7 2.3 Plasmid transfection 7 2.4 Phagocytosis assay 8 2.5 Total RNA extraction and reverse transcription PCR 8 2.6 Lysate preparation of total lysate 9 2.7 Western blotting analysis 9 2.8 Animals 10 2.9 AOM/DSS model 10 2.10 Mouse orthotropic colorectal cancer model 10 2.11 H&E staining 11 2.12 Immunofluorescence staining 11 2.13 Statistical analysis 12 3. Results 13 3.1 Eps8 involves in LPS-induced phagocytosis and TLR4 signaling in macrophages. 13 3.2 SDF-1α abolishes LPS-induced Pi-p38 MAPK, COX2 and iNOS expression but not phagocytosis. 13 3.3 SDF-1α decrease LPS-induced M1-like cytokine. 14 3.4 SDF-1α inhibiting LPS-induced COX2 and iNOS expression depends on Eps8 expression. 14 3.5 Eps8 regulates LPS-induced il-6 expression 15 3.6 LPS attenuates SDF-1α-elicited activation of ERK and AKT. 15 3.7 LPS inhibiting SDF-1α-induced phosphorylation of AKT and ERK is independent on Eps8 expression. 16 3.8 Eps8 promotes tumor formation and TAM recruitment in AOM/DSS mouse model. 16 3.9 p68Eps8 overexpression enhances CT26 metastasis in orthotropic mouse tumor model. 17 4. Discussion 19 5. References 22 6. Tables 28 7. Figures 30 8. Appendix 48

    Bader, J. E., Velazquez, K. T., Enos, R. T., Cranford, T. L., Davis, J. M., & Murphy, E. A. (2016). Macrophage depletion decreases inflammation and tumorigenesis in the AOM/DSS mouse model of colon cancer. The Journal of Immunology, 196(1 Supplement), 142.122.

    Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol, 14(3), 171-179. doi:10.1016/j.semcancer.2003.10.003

    Beider, K., Bitner, H., Leiba, M., Gutwein, O., Koren-Michowitz, M., Ostrovsky, O., . . . Nagler, A. (2014). Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype. Oncotarget, 5(22), 11283-11296.

    Busillo, J. M., & Benovic, J. L. (2007). Regulation of CXCR4 Signaling. Biochimica et biophysica acta, 1768(4), 952-963. doi:10.1016/j.bbamem.2006.11.002

    Chen, H., Wu, X., Pan, Z. K., & Huang, S. (2010). Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res, 70(23), 9979-9990. doi:10.1158/0008-5472.CAN-10-2394

    Chen, Y.-J., Shen, M.-R., Chen, Y.-J., Maa, M.-C., & Leu, T.-H. (2008). Eps8 decreases chemosensitivity and affects survival of cervical cancer patients. Mol Cancer Ther, 7(6), 1376-1385. doi:10.1158/1535-7163.MCT-07-2388

    Chen, Y. J., Hsieh, M. Y., Chang, M. Y., Chen, H. C., Jan, M. S., Maa, M. C., & Leu, T. H. (2012). Eps8 Protein Facilitates Phagocytosis by Increasing TLR4-MyD88 Protein Interaction in Lipopolysaccharide-stimulated Macrophages. Journal of Biological Chemistry, 287(22), 18806-18819. doi:10.1074/jbc.M112.340935

    Cooper, C. S., Nicholson, A. G., Foster, C., Dodson, A., Edwards, S., Fletcher, A., . . . Cheng, S. J. (2006). Nuclear overexpression of the E2F3 transcription factor in human lung cancer. Lung Cancer, 54(2), 155-162. doi:10.1016/j.lungcan.2006.07.005

    De Meyer, T., Bijsmans, I. T., Van de Vijver, K. K., Bekaert, S., Oosting, J., Van Criekinge, W., . . . Sieben, N. L. (2009). E2Fs mediate a fundamental cell-cycle deregulation in high-grade serous ovarian carcinomas. J Pathol, 217(1), 14-20. doi:10.1002/path.2452

    Fischer, A. H., Jacobson, K. A., Rose, J., & Zeller, R. (2008). Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc, 2008, pdb.prot4986. doi:10.1101/pdb.prot4986

    Funato, Y., Terabayashi, T., Suenaga, N., Seiki, M., Takenawa, T., & Miki, H. (2004). IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res, 64(15), 5237-5244. doi:10.1158/0008-5472.can-04-0327

    Gilmore, T. D. (2006). Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 25(51), 6680-6684. doi:10.1038/sj.onc.1209954

    Griffith, O. L., Melck, A., Jones, S. J., & Wiseman, S. M. (2006). Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol, 24(31), 5043-5051. doi:10.1200/jco.2006.06.7330

    Hallam, S., Escorcio-Correia, M., Soper, R., Schultheiss, A., & Hagemann, T. (2009). Activated macrophages in the tumour microenvironment – dancing to the tune of TLR and NF-κB. The Journal of pathology, 219(2), 143-152. doi:10.1002/path.2602

    Hardbower, D. M., Coburn, L. A., Asim, M., Singh, K., Sierra, J. C., Barry, D. P., . . . Wilson, K. T. (2017). EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis. Oncogene. doi:10.1038/onc.2017.23
    Kawai, T., & Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognitionInt Immunol. 21:313. International Immunology, 21(4), 317-337. doi:10.1093/intimm/dxp017

    Kramer, N., Schmollerl, J., Unger, C., Nivarthi, H., Rudisch, A., Unterleuthner, D., . . . Dolznig, H. (2017). Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene. doi:10.1038/onc.2017.144

    Kuipers, E. J., Grady, W. M., Lieberman, D., Seufferlein, T., Sung, J. J., Boelens, P. G., . . . Watanabe, T. (2015). Colorectal cancer. Nat Rev Dis Primers, 1, 15065. doi:10.1038/nrdp.2015.65

    Lau, T. S., Chan, L. K., Wong, E. C., Hui, C. W., Sneddon, K., Cheung, T. H., . . . Kwong, J. (2017). A loop of cancer-stroma-cancer interaction promotes peritoneal metastasis of ovarian cancer via TNFalpha-TGFalpha-EGFR. Oncogene. doi:10.1038/onc.2016.509

    Leu, T. H., Yeh Hh Fau - Huang, C.-C., Huang Cc Fau - Chuang, Y.-C., Chuang Yc Fau - Su, S. L., Su Sl Fau - Maa, M.-C., & Maa, M. C. (2004). Participation of p97Eps8 in Src-mediated transformation. Journal of Biological Chemistry, 279(11), 9875-9881.

    Maa, M. C., Lee Jc Fau - Chen, Y.-J., Chen Yj Fau - Chen, Y.-J., Chen Yj Fau - Lee, Y.-C., Lee Yc Fau - Wang, S.-T., Wang St Fau - Huang, C.-C., . . . Leu, T. H. (2007). Eps8 facilitates cellular growth and motility of colon cancer cells by increasing the expression and activity of focal adhesion kinase. Journal of Biological Chemistry, 282(27), 11.

    Maa, M. C., & Leu, T. H. (2013). EPS8, an Adaptor Protein Acts as an Oncoprotein in Human Cancer. In K. Tonissen (Ed.), Carcinogenesis (pp. Ch. 05). Rijeka: InTech.

    Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436-444. doi:10.1038/nature07205

    Mota, J. M., Leite, C. A., Souza, L. E., Melo, P. H., Nascimento, D. C., de-Deus-Wagatsuma, V. M., . . . Rego, E. M. (2016). Post-Sepsis State Induces Tumor-Associated Macrophage Accumulation through CXCR4/CXCL12 and Favors Tumor Progression in Mice. Cancer Immunol Res, 4(4), 312-322. doi:10.1158/2326-6066.CIR-15-0170

    Munkholm, P. (2003). Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther, 18 Suppl 2, 1-5.

    Olsson, A. Y., Feber, A., Edwards, S., Te Poele, R., Giddings, I., Merson, S., & Cooper, C. S. (2007). Role of E2F3 expression in modulating cellular proliferation rate in human bladder and prostate cancer cells. Oncogene, 26(7), 1028-1037. doi:10.1038/sj.onc.1209854

    Plociennikowska, A., Hromada-Judycka, A., Borzecka, K., & Kwiatkowska, K. (2015). Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci, 72(3), 557-581. doi:10.1007/s00018-014-1762-5

    Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat Med, 19(11), 1423-1437. doi:10.1038/nm.3394

    Sanchez-Lopez, E., Flashner-Abramson, E., Shalapour, S., Zhong, Z., Taniguchi, K., Levitzki, A., & Karin, M. (2016). Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene, 35(20), 2634-2644. doi:10.1038/onc.2015.326

    Sica, A. (2010). Role of tumour-associated macrophages in cancer-related inflammation. Exp Oncol, 32(3), 153-158.

    Singh, S., Singh, U. P., Grizzle, W. E., & Lillard, J. W., Jr. (2004). CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest, 84(12), 1666-1676. doi:10.1038/labinvest.3700181
    Solinas, G., Germano, G., Mantovani, A., & Allavena, P. (2009). Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol, 86(5), 1065-1073. doi:10.1189/jlb.0609385

    Tanaka, M., Shimamura, S., Kuriyama, S., Maeda, D., Goto, A., & Aiba, N. (2016). SKAP2 Promotes Podosome Formation to Facilitate Tumor-Associated Macrophage Infiltration and Metastatic Progression. Cancer Res, 76(2), 358-369. doi:10.1158/0008-5472.CAN-15-1879

    Teicher, B. A., & Fricker, S. P. (2010). CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res, 16(11), 2927-2931. doi:10.1158/1078-0432.ccr-09-2329

    Trikha, P., Sharma, N., Pena, C., Reyes, A., Pecot, T., Khurshid, S., . . . Leone, G. (2016). E2f3 in tumor macrophages promotes lung metastasis. Oncogene, 35(28), 3636-3646. doi:10.1038/onc.2015.429

    Tseng, W., Leong, X., & Engleman, E. (2007). Orthotopic mouse model of colorectal cancer. J Vis Exp(10), 484. doi:10.3791/484

    Wang, H., Shao, Q., Sun, J., Ma, C., Gao, W., Wang, Q., . . . Qu, X. (2016). Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1. Oncoimmunology, 5(4), e1122157. doi:10.1080/2162402X.2015.1122157

    Wang, Z., Ma, Q., Liu, Q., Yu, H., Zhao, L., Shen, S., & Yao, J. (2008). Blockade of SDF-1/CXCR4 signalling inhibits pancreatic cancer progression in vitro via inactivation of canonical Wnt pathway. Br J Cancer, 99(10), 1695-1703. doi:10.1038/sj.bjc.6604745

    Weisser, S. B., van Rooijen, N., & Sly, L. M. (2012). Depletion and Reconstitution of Macrophages in Mice. Journal of Visualized Experiments : JoVE(66), 4105. doi:10.3791/4105

    Yao, J., Weremowicz S Fau - Feng, B., Feng B Fau - Gentleman, R. C., Gentleman Rc Fau - Marks, J. R., Marks Jr Fau - Gelman, R., Gelman R Fau - Brennan, C., . . . Polyak, K. (2006). Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res, 66(8), 14.

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE