簡易檢索 / 詳目顯示

研究生: 王曼馨
Wang, Man-Hsin
論文名稱: 以奈米纖維膜固定纖維素分解酵素應用於羧甲基纖維素水解製程開發之研究
Cellulase Immobilized onto Electrospun Nanofibrous Membrane for Hydrolysis of Carboxymethyl Cellulose
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 78
中文關鍵詞: 奈米纖維膜電紡織法羧甲基纖維素纖維素分解酵素固定化酵素
外文關鍵詞: carboxymethyl cellulose, nanofibrous membrane, cellulase immobilization, electrospinning
相關次數: 點閱:95下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究選用聚丙烯摻雜馬來酸酐來做為電紡織法的高分子溶液,成功地製備出新穎的固定化擔體材料-PAN-b-MA奈米纖維膜。透過酸酐官能基直接與纖維素分解酵素上的NH2官能基形成共價鍵結,可將酵素固定於奈米纖維膜上。實驗結果觀察到添加馬來酸酐會導致奈米纖維膜上珠狀物的產生,而適量的珠狀物將有助於酵素的活性表現。當聚丙烯與馬來酸酐之重量摻合比例(weight ratio)為1:1時,固定化酵素可以展現出最佳的活性,其值約為450 U/g-material。在最佳的酵素固定化參數下,進行羧甲基纖維素(carboxymethyl cellulose, CMC)水解反應,實驗結果發現,固定化酵素的活性於反應溫度50℃時,水解表現最佳,且不受到反應pH值變化之影響。就酵素穩定性而言,固定化纖維素分解酵素在高溫下的穩定性較游離酵素佳,而在經過6次CMC水解反應後,其相對活性仍可維持在60%左右,與其他材料相較下具有較佳的操作穩定性。總括而言,纖維素分解酵素經固定在PAN-b-MA奈米纖維膜後,進行水解反應時對pH值忍受力高,並且具有較佳的熱穩定性和操作穩定性,充分地顯示出此固定化纖維素分解酵素在工業應用上的潛力。

    Electrospinning is a novel process to produce fibrous membranes with nanoscale diameters and properties of high specific surface area as well as porous structure, so electrospun nanofibrous membranes are excellent for filtration application, drug delivery, tissue engineering scaffold and enzyme immobilization.
    In this study, nanofibrous membrane, made by poly(acrylonitrile-blending-maleic acid anhydride) (PAN-b-MA), contained anhydride groups for immobilizing cellulase from Aspergillus niger. The average diameter of 150~300 nm was observed from the nanofiber by FESEM and covalent bond formation between enzyme molecule and nanofibrous membrane was confirmed by using FTIR. When the blending ratio of PAN and maleic anhydride ratio was given as 1:1 (w/w), the immobilization efficiency of nanofibrous membrane was superior. The loading efficiency of immobilized enzyme on nanofiber was about 40%, and the specific activity was 450 U/g-material.
    The biocatalytic efficiency of immobilized cellulase was examined for carboxymethyl cellulose (CMC) hydrolysis for determining the optimal immobilization conditions in appropriate enzyme concentration of 10 wt%, pH value of 4.6, and reaction time of 90 min at 60℃. Under the optimal immobilization condition, the immobilized enzyme performed well for CMC hydrolysis at reaction temperature of 50℃ but independent of pH value. In addition, the immobilized cellulase demonstrated better thermal stability than free enzyme at higher temperature. Beside, it retained 60% of its initial activity after six repeated batches of reaction.
    PAN-b-MA nanofibrous membrane was prepared by electrospinning and successfully used as the support for cellulase immobilization, and it is the potential reusable biocatalyst for hydrolyzing crystalline cellulose.

    摘要....................................I Abstract...............................II 目錄..................................III 圖目錄................................VII 表目錄..................................X 第一章 緒論.............................1 1.1 前言................................1 1.2 研究動機與目的......................3 第二章 文獻回顧.........................5 2.1 纖維素(Cellulose).................5 2.1.1 纖維素的簡介......................5 2.1.2 生質能源的開發利用................6 2.2 纖維素分解酵素(Cellulase)........12 2.2.1 纖維素分解酵素之種類.............12 2.2.2 纖維素分解酵素的應用.............14 2.3 固定化技術.........................16 2.3.1 固定化技術之定義.................16 2.3.2 固定化方法.......................16 2.3.3 固定化酵素之性質.................24 2.4 電紡織技術.........................26 2.4.1 電紡織技術的簡介.................26 2.4.2 電紡織技術的原理.................29 2.4.3 電紡織技術的應用.................30 第三章 實驗材料與方法..................32 3.1 實驗材料...........................32 3.2 實驗方法...........................34 3.2.1 奈米纖維膜之製備.................34 3.2.2 固定化酵素之製備.................34 3.2.3 蛋白質定量分析...................36 3.2.4固定化酵素之活性分析..............37 第四章 結果與討論......................39 4.1 奈米纖維膜.........................39 4.1.1 高分子溶液對纖維結構的影響.......39 4.1.2 PAN-b-MA奈米纖維膜之物理性質.....42 4.1.3 固定化纖維素分解酵素之表面分析...45 4.2 固定化酵素之活性分析...............48 4.2.1 馬來酸酐添加比例對活性之影響.....48 4.2.2 酵素溶液濃度對活性之影響.........53 4.2.3 固定化時間對活性之影響...........55 4.2.4 固定化溫度對活性之影響...........57 4.2.5 固定化pH值對活性之影響...........59 4.2.6 溫度對催化水解CMC之影響..........61 4.2.7 pH值對催化水解CMC之影響..........63 4.3 固定化酵素之穩定性分析.............65 4.3.1 固定化酵素之熱穩定性.............65 4.3.2 固定化酵素之pH值穩定性...........65 4.3.3 固定化酵素之操作穩定性...........67 第五章 結論與未來展望..................68 5.1 結論...............................68 5.2 未來展望...........................70 參考文獻...............................72 自述...................................78

    Bguin, P. “Cloning of cellulase gene,” Critical Reviews in Biotechnology, 6, 129-162 (1987).
    Bguin, P. and Aubert, J. P. “The biological degradation of cellulose,” FEMS microbiology reviews, 13, 25-58 (1994).
    Bhat, M. K. “Cellulases and related enzymes in biotechnology,” Biotechnology Advances, 18, 355–383 (2000).
    Bhat, M. K. and Bhat, S., “Cellulose degrading enzymes and their potential industrial applications,” Biotechnology advances, 15, 583-620 (1997).
    Bisaria, V. S. and Ghose, T. K., “Biodegradation of cellulostic materials: substrates, microorganisms, enzymes and products,” Enzyme and microbial technology, 3, 90-104 (1981).
    Bisaria, V. S. and Mishra, S., “Regulatory aspects of cellulase biosynthesis and secretion,” Critical reviews in biotechnology, 9, 61-103 (1989).
    Bradford, M. M. A. “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Analytical Biochemistry, 72, 248-54 (1976).
    Dincer, A. and Telefoncu, A. “Improving the stability of cellulase by immobilization on modified polyvinyl alcohol coated chitosan beads,” Journal of Molecular Catalysis B:Enzymatic, 45, 10-14 (2007).
    Farrell, A. E.; Plevin, R. J.; Turner, B. T.; Jones, A. D.; O’Hare, M. and Kammen1, D. M.“Ethanol can contribute to energy and environmental goals,” Science, 311, 506-508 (2006).
    Giorno, L. and Drioli, E “Biocatalytic membrane reactors:applications and perspectives,” Trends in Biotechnology, 18, 339-349(2000).
    Goldstein, L. “A new polymier carrier for immobilization of proteins of water insoluble derivaties of pepsin and trypsin,” Biochimica Et Biophysica Acta. Enzymology, 327,132-137 (1973).
    Goyal, A. K. and Eveleigh, D. E. “Cloning, sequencing and analysis of the ggh-A gene encoding a 1,4-β-D-glucan glucohydrolase from Microbispora bispora,” Gene, 172, 93-98 (1996).
    Gray, K. A.; Zhao, L. and Emptage, M. “Bioethanol”Current Opinion in Chemical Biology, 10, 141-146 (2006).
    Grohmann, K.; Himmel, M.; Rivard, C.; Tucker, M. and Baker, J. “Chemical-mechanical methods for the enhanced utilization of straw,” Biotechnology and Bioengineering, 14, 137-157 (1984).
    Hahn-Hgerdal, B.; Galbe, M.; Gorwa-Grauslund, M. F.; Lidn, G. and Zacchi, G. “Bio-ethanol-the fuel of tomorrow from the residues of today,” Trends in Biotechnology, 24, 549–556 (2006).
    Huang, Z. M.; Zhang, Y. Z.; Kotaki, M. and Ramakrishna, S. “A review on polymer nanofibers by electrospinning and their applications in nanocomposites,” Composites Science and Technology, 63, 2223-2253 (2003).
    Kajiuchi, T. and Park, J. W. “Characteristics of cellulase modified with a copolymer of polyethylene glycol derivative and maleic acid anhydride,” Journal of Chemical Engineering of Japan, 25, 202-106 (1992).
    Knappert, H.; Grethlein, H. and Converse, A. “Pretreatment of wood for enzymatic hydrolysis,” Biotechnology and Bioengineering, 11, 67-77 (1980).
    Lenting, H. B. M. and Warmoeskerken, M. M. C. G. “Mechanism of interaction between cellulase action and applied shear force, an hypothesis,” Journal of Biotechnology, 89, 217-226 (2001).
    Li, C.; Seki, K.; Matsunaga, T.; Yoshimoto, M.; Fukunaga, K. and Nakao, K. “Enzymatic hydrolysis of waste paper in an external loop airlift bubble column with continuous ultrasonic irradiation,” Journal of Chemical Engineering of Japan, 37, 1041-1049 (2004).
    Li, C.; Yoshimoto, M.; Fukunaga, K. and Nakao, K. “Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose,” Bioresource Technology, 98, 1366-1372 (2007).
    Lutzen, N. W.; Nielsen M. H.; Oxenboell, K. M.; Schulein, M. and Stentebjerg-Olesen, B. “Cellulases and their application in the conversion of lignocellulose to fermentable sugars,” Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 300, 283-291 (1983).
    Lynd, L. R.; Weimer, P. J.; Zyl, W. H. van and Pretorius, I. S. “Microbial cellulose utilization: fundamentals and biotechnology,” Microbiology and Molecule Biology Reviews, 66, 506-577 (2002).
    Mandels, M. “Applications of cellulases,” Biochemical Society transactions, 13, 414-415 (1985).
    Martinek, K.; Klibanov, A. M.; Goldmacher, V. S. and Berezin, I. V. “The principles of enzyme stabilization 1. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion,” Biochimica Et Biophysica Acta Enzymology, 485, 1-12 (1977).
    McMillan, J. D. “Pretreatment of lignocellulosic biomass,” In: Himmel ME, Baker JO, Overend RP, editors. Enzymatic conversion of biomass for fuels production, ACS Symposium Series, Washington, DC: ACS, 566, 292–324 (1994).
    Paljevac, M.; Primozic, M.; Habulin, M.; Novak, Z. and Knez, Z. “Hydrolysis of carboxymethyl cellulose catalyzed by cellulase immobilized on silica gels at low and high pressures,” Journal of supercritical Fluids, 43, 74-80 (2007).
    Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Lim, T. C. and Ma, Z. “ An Introduction to Electrospinning and Nanofibers,” in Introduction & Electrospinning Process, 1st Edition, World Scientific, Singapore, 2005, Chapter 1&3.
    Reneker, D. H. and Chun, I. “Nanometre Diameter Fibres of Polymer, Produced by Electrospinning,” Nanotechnology, 7, 216-223 (1996).
    Rixon, J. E.; Ferreira, L. M.; Durrant, A. J.; Laurie, J. I.; Hazelwood, G. P. and Gilbert, H. J. “Characterization of the gene celD and its encoded product 1,4-beta-D-glucan glucohydrolase D from Pseudomonas fluorescens subsp. cellulosa,” The Biochemical journal, 285, 947-955 (1992).
    Saleem, M.; Rashid, M. H.; Jabbar, A.; Perveen, R.; Khalid, A. M. and Rajoka, M. I. “Kinetic and thermodynamic properties of an immobilized endoglucanase from Arachniotus citrinus,” Process Biochemistry, 40, 849-855(2005)
    Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. “Role of Chain Entanglements on Fiber Formation during Electrospinning of Polymer Solutions: Good Solvent, Non-specific Polymer-polymer Interaction Limit,” Polymer, 46, 3372-3384 (2005).
    Somers, W.; Visser, J.; Rombouts, F. M. and Riet, K. van’t “Developments in downstream processing of (poly) saccharide converting enzymes,” Journal of Biotechnology, 11, 199-222 (1989).
    Wood, T. M. and Bhat, M. K. “Methods for measuring cellulase activities” Methods in enzymology, 160, 87-112 (1988).
    Wu, L.; Yuan, X. and Sheng, J. “Immobilization of cellulase in nanofibrous PVA membranes by electrospinning,” Journal of Membrane Science, 250, 167-173 (2005).
    Yuan, X. Y.; Shen, N. X.; Sheng, J. and Wei, X. “Immobilization of cellulase using acrylamide grafted acrylonitrile copolymer membranes,” Journal of Membrane Science, 155, 101-106 (1999).
    邱少華,「幾丁聚醣在固定化技術上之應用」,博士論文,國立清華大學,臺灣新竹 (2003)。
    呂鋒洲、林仁混,「基礎酵素學」,聯經出版事業公司,臺灣,第十八章,1991。
    陳國誠,「生物固定化技術與產業應用」,茂昌圖書有限公司,臺灣,第48至57頁,1990。
    趙國評,邱喚文,「淺談生質酒精」,林業研究專訊,第14卷第3期,2007。

    下載圖示 校內:2009-07-14公開
    校外:2011-07-14公開
    QR CODE