| 研究生: |
廖益德 Liao, Yi-de |
|---|---|
| 論文名稱: |
兩組相依資料下在固定時間點上檢定存活機率之統計方法 Testing equality of survival functions based on paired censored data at a fixed point in time |
| 指導教授: |
嵇允嬋
Chi, Yunchan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 28 |
| 中文關鍵詞: | 存活函數 、檢定統計量 、成對右設限資料 |
| 外文關鍵詞: | survival function, test statistics, paired right-censored data |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在醫學應用上,常見的問題為,針對兩組相依的右設限資料(或成對右設限資料),檢定兩組的存活函數是否有差異。當兩組存活函數呈交叉現象時,通常不會檢定兩組的存活函數的差異,而是在固定一些感興趣的時間點上比較兩組的存活機率之差異。針對兩組獨立資料, Klein et al. (2007)提出在固定時間上比較兩組的存活機率的檢定統計量。然而,這些檢定統計量無法適用在兩組相依資料上。因此,本論文針對兩組相依資料,推廣Klein et al. (2007)所建議的檢定統計量,在固定時間上比較兩組的存活機率之差異。接著以模擬方式探討所推廣的檢定統計量,其漸近分布的準確性,和比較這些檢定統計量的檢定力。最後,將這些檢定統計量應用於比較糖尿病患者接受二種治療方法後的五年失明機率。
A common problem arises in many medical applications is testing equality of survival functions based on paired right-censored data. Rather than comparison of entire survival curves, interest is often focused on the comparison at a fixed point in time when the survival curves of the treatments are known to cross. Klein et al. (2007) had studied a number of methods for comparing two survival functions at a fixed point in time based on some transformations of the survival function for two independent samples of right-censored data. However, these test statistics are not appropriate for paired right-censored data since the intra-pair correlation are ignored. Therefore, in this paper, Klein’s methods are extended to compare the equality of two survival functions at a fixed point in time for paired right-censored data and the standard error of test statistics should be modified to accommodate the possible dependence between matched subjects. Finally, simulation studies are conducted to assess finite sample properties, and the methods are illustrated with an application to a diabetes data in Diabetic Retinopathy Study.
Aalen, O. O. (1978b). Nonparametric inference for a family of counting process. Annals of Statistic 6:701-726
Andersen, P. K., Klein, J. P., and Rosthøj, S. (2003). Generalized linear models for correlated pseudo-observations with applications to multi-state models. Biometrika 90:15–27.
Huster, W. S., Brookmeyer, R. and Self, S. G. (1989). Modeling paired survival data with covariates. Biometrics 45:145-156.
Jung, S. H. (1999). Rank tests for survival data. Lifetime Data Analysis 5:67-79.
Kalbfeisch, J. D. and Prentice, R. L. (1980). The statistical analysis of failure time data. New York: Wiley.
Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation form incomplete observations. Journal of the American Statistical Association 53:457-481.
Klein, J. P., Logan, B., Harhoff, M., and Anderson, P. K. (2007). Analyzing survival curves at a fixed point in time. Statistics in Medicine 26:4505-4519.
Murray, S. (2001). Using weighted Kaplan-Meier statistics in nonparametric comparisons of paired censored survival outcomes. Biometrics 57:361-368.