簡易檢索 / 詳目顯示

研究生: 姚姍斈
Yao, Shan-Hsueh
論文名稱: 探討蝴蝶蘭四異戊二烯二磷酸之生合成路徑
Investigation of geranylgeranyl diphosphate (GGDP) biosynthesis pathway in Phalaenopsis orchids
指導教授: 陳虹樺
Chen, Hong-Hwa
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 52
中文關鍵詞: 四異戊二烯二磷酸合成酶蝴蝶蘭isoprenoid生合成途徑
外文關鍵詞: GGDPS, Phalaenopsis orchids, isoprenoid biosynthesis pathway
相關次數: 點閱:118下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 四異戊二烯二磷酸 (GGDP) 是植物體內合成胡蘿蔔素、吉貝素、葉綠素、雙萜類、isoprenoid quinones 以及四異戊二烯二磷酸化蛋白質的重要前驅物。GGDP的生合成是經由一個關鍵酵素,四異戊二烯二磷酸合成酶(GGDPS),將三個五碳單元的IDP和一個五碳單元的DMADP聚合而成二十碳單元的GGDP。本研究自大葉蝴蝶蘭及姬蝴蝶蘭中找到與其它植物的GGDPS/FDPS/GDPS有高度序列相似度的基因,依 序命名為PeGGDPS、PbFDPS、PbGDPS-bl 1和PbGDPS-bl 2。
    序列分析結果顯示這些基因都具有保留的Asp-rich motif。此外,PeGGDPS,PbGDPS-bl 1和PbGDPS-bl 2皆有可轉運到不同胞器的訊號胜肽。進一步,功能性互補實驗證實PeGGDPS在生物體內確實具有合成二十個碳之GGDPS酵素活性,而利用TLC鑑別出PbFDPS以及PbGDPS-bl 1之產物則顯示FDP為這兩個蛋白質的主要產物。空間分布上,GGDPS主要表現在大葉蝴蝶蘭之根、花序軸以及花梗上,FDPS則是廣泛地分布於整個植株的營養組織及生殖組織,然而GDPS-bl 1以及GDPS-bl 2則具有花部專一性的表現。親緣演化分析結果指出PeGGDPS屬於GDPS-a群,而PbGDPS-bl 1以及PbGDPS-bl 2則位於GDPS-b群。不同於其他植物僅具一或兩群GDPS,蝴蝶蘭是目前已知同時具有三群不同GDPS的物種,其中包括GDPS-a、GDPS-b和GDPS-c/d群。鑑定這些基因的身分以及功能,有助於我們更進一步了解它們在蘭花的isoprenoid生合成途徑上扮演的角色。

    Geranylgeranyl diphosphate (GGDP) is an essential precursor for carotenoids, gibberellins, chlorophylls, isoprenoid quinones, diterpenoids and geranylgeranylated proteins in plants. The biosynthesis of GGDP is carried out by GGDP synthase (GGDPS), catalyzing the consecutive condensation of three molecules of isopentenyl diphosphate (IDP, C5) with one dimethylallyl diphosphate (DMADP, C5) to give a C20 skeleton. Here we cloned a gene with high sequence similarity to plant GGDPSs, together with one FDPS and two GDPS-like genes from either Phalaenopsis orchid P. bellina or P. equestris, named as PeGGDPS, PbFDPS, PbGDPS-bl 1 and PbGDPS-bl 2, respectively.
    Amino acid sequences of all four prenyltransferases exhibited the conserved Asp-rich motifs. In addition, PeGGDPS, and PbGDPS-bl 1/2 harbored a putative signal peptide for the translocation into plastid and mitochondria, respectively. Functional complementation assay indicated PeGGDPS acting as an active GGDPS in vivo, while both PbFDPS and PbGDPS-bl 1 produced FDP as the main product in the TLC characterization of their catalyzed products in vitro. Spatial expression pattern of the GGDPS showed that it mainly expressed in root, stalk and pedicle, and FDPS transcript could express in both vegetative and reproductive organs in P. bellina. In contrast, expressions of both PbGDPS-bl 1/2 were floral specific. Phylogenetic analysis showed that PeGGDPS and both PbGDPS-bl 1/2 were located at GDPS-a and GDPS-b clades, respectively. Unlike most plants that have one or two out of four clades of GDPS, Phalaenopsis orchids possess three different clades of GDPS including GDPS-a, GDPS-b and GDPS-c/d. Identification and characterization of these genes provid further evidence for understanding of their roles in isoprenoid biosynthesis pathways in orchids.

    中文摘要 I Abstract II 誌謝 III List of Tables VI List of Figures VII List of Appendix Tables VIII List of Appendix Figures IX 1. Introduction 1 1.1 Isoprenoids 1 1. 1.1 Significance of isoprenoids in higher plants 1 1.1.2 Chain-length elongation of isoprenoids by short-chain prenyltransferase 1 1.1.3 Two conserved DD(X)2-4D motifs present in short-chain prenyltransferase 1 1.1.4 Subcellular localization of short-chain prenyltransferases 1 1.2 GGDP 2 1.2.1 Biological roles of GGDP 2 1.2.2 Distributions of GGDPS in nature 2 1.3 Studies of prenyltransferase in Phalaenopsis bellina 3 1.3.1 PbGDPS_LSU with high sequence similarity to GGDPS was isolated from P. bellina 3 1.3.2 GDPS-b clade proteins 3 2. Purpose 5 3. Materials and methods 6 3.1 Plant materials 6 3.2 Molecular cloning of potential GDPS, FDPS and GGDPS from Phalaenopsis orchids 6 3.3 Sequence analysis 6 3.4 Phylogenetic analysis 6 3.5 Functional complementation of GGDPS 7 3.6 Isolation of total RNA 8 3.7 Expression and purification of His-tagged PbFDPS and PbGDPS-bl 1recombinant proteins 8 3.8 Functional characterization of PbFDPS and PbGDPS-bl 1 8 3.9 Measurement of the kinetic properties of PbFDPS 9 3.10 Molecular modeling of isolated orchid prenyltransferase proteins 9 4. Results 10 4.1 Isolation and sequence analysis of GGDPS, FDPS and GDPS genes from Phalaenopsis orchids 10 4.2 Phylogenetic relationship of Phalaenopsis orchid prenyltransferases 11 4.3 Functional complementation assay of GGDPS 12 4.4 Functional characterization of PbFDPS and PbGDPS-bl 1 12 4.5 Expression patterns of PbGGDPS, PbFDPS, PbGDPS-bl 1 and PbGDPS-bl 2 14 4.6 Homology modeling structures of Phalaenopsis orchid prenyltransferases 14 5.Discussion 15 5.1 Isoprenoid metabolism in Phalaenopsis orchids 15 5.2 Functional differentiation between PeGGDPS and PbGDPS_LSU 16 5.3 PbFDPS did not generate GGDP in nature 17 5.4 Functional redundant PbFDPS and PbGDPS-bl 1 localized in different subcellular compartments 17 6. Conclusion 19 7. Perspectives 20 8. References 21 List of Tables Table 1 Apparent Km and Kcat values for recombinant PbFDPS 28 Table 2. Templates used for constructing 3D structure of orchid prenyltransferases. 29 Table 3. All the primers used in this study 30 List of Figures Fig 1. Multiple alignments of PeGGDPS 31 Fig. 2. Multiple alignments of PbFDPS 32 Fig. 3. Multiple alignments of PbGDPS-bl 1 and PbGDPS-bl 2 33 Fig. 4. Phylogenetic tree of plant prenyltransferases 34 Fig. 5. in vivo complementation analysis of GGDPS activity 35 Fig. 6. Protein isolation and enzyme activity of recombinant PbFDPS 36 Fig. 7. TLC characterization of PbFDPS products. 37 Fig. 8. Protein isolation and enzyme activity of recombinant PbGDPS-bl 1 38 Fig. 9. TLC characterization of PbGDPS-bl 1 products 39 Fig. 10. Expression patterns of PbGGDPS, PbGDPS-bl 1, PbGDPS-bl 2 and PbFDPS 40 Fig. 11. Molecular models of Phalaenopsis orchid prenyltransferases 42 Fig. 12. Overview of isoprenoid biosynthesis pathways and their subcellular localizations 44 Fig. 13. Multiple alignments of PeGGDPS and GGDPSs/GDPS_LSUs from plants 45 Fig. 14. The loop structures of PbGDPS_LSU, PeGGDPS and mustard GGDPS 46 List of Appendix Tables Appendix Table 1. Functionally characterized plant GDPS proteins. 47 Appendix Table 2. Functionally characterized plant FDPS proteins. 48 Appendix Table 3. Functionally characterized plant GGDPS proteins 49 List of Appendix Figures Appendix Fig. 1. pACCAR25△crtE plasmid 50 Appendix Fig. 2. Overview of a plant cell. 51 Appendix Fig. 3. Expression patterns of five Arabidopsis GGDPS 52

    Aitken, S.M., Attucci, S., Ibrahim, R.K., and Gulick, P.J. (1995). A cDNA encoding geranylgeranyl pyrophosphate synthase from white lupin. Plant Physiol. 108, 837-838.
    Akiyama, K., Matsuzaki, K., and Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824-827.
    Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
    Attucci, S., Aitken, S.M., Gulick, P.J., and Ibrahim, R.K. (1995). Farnesyl pyrophosphate synthase from white lupin: molecular cloning, expression, and purification of the expressed protein. Arch. Biochem. Biophys. 321, 493-500.
    Badillo, A., Steppuhn, J., Deruere, J., Camara, B., and Kuntz, M. (1995). Structure of a functional geranylgeranyl pyrophosphate synthase gene from Capsicum annuum. Plant Mol. Biol. 27, 425-428.
    Bantignies, B., Liboz, T., and Ambid, C. (1995). Nucleotide sequence of a Catharanthus roseus geranylgeranyl pyrophosphate synthase gene. Plant Physiol. 110, 336.
    Bouvier, F., Suire, C., d'Harlingue, A., Backhaus, R.A., and Camara, B. (2000). Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J. 24, 241-252.
    Burke, C., and Croteau, R. (2002a). Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch. Biochem. Biophys. 405, 130-136.
    Burke, C., and Croteau, R. (2002b). Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J. Biol. Chem. 277, 3141-3149.
    Burke, C.C., Wildung, M.R., and Croteau, R. (1999). Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc. Natl. Acad. Sci. U S A 96, 13062-13067.
    Cervantes-Cervantes, M., Gallagher, C.E., Zhu, C., and Wurtzel, E.T. (2006). Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. Plant Physiol. 141, 220-231.
    Chang, T.H., Guo, R.T., Ko, T.P., Wang, A.H., and Liang, P.H. (2006). Crystal structure of type-III geranylgeranyl pyrophosphate synthase from Saccharomyces cerevisiae and the mechanism of product chain length determination. J. Biol. Chem. 281, 14991-15000.
    Chang, T.H., Hsieh, F.L., Ko, T.P., Teng, K.H., Liang, P.H., and Wang, A.H. (2010). Structure of a heterotetrameric geranyl pyrophosphate synthase from mint (Mentha piperita) reveals intersubunit regulation. Plant Cell 22, 454-467.
    Closa, M., Vranova, E., Bortolotti, C., Bigler, L., Arro, M., Ferrer, A., and Gruissem, W. (2010). The Arabidopsis thaliana FPP synthase isozymes have overlapping and specific functions in isoprenoid biosynthesis, and complete loss of FPP synthase activity causes early developmental arrest. Plant J.
    Crowell, D.N. (2000). Functional implications of protein isoprenylation in plants. Prog. Lipid. Res. 39, 393-408.
    Cunillera, N., Boronat, A., and Ferrer, A. (1997). The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. J. Biol. Chem. 272, 15381-15388.
    Delano, W.L. (2002). The PyMOL Molecular Graphic System. (http://www.pymol.org/: DeLano Scientific).
    Dudley, M.W., Green, T.R., and West, C.A. (1986). Biosynthesis of the Macrocyclic Diterpene Casbene in Castor Bean (Ricinus communis L.) Seedlings : The Purification and Properties of Farnesyl Transferase from Elicited Seedlings. Plant Physiol. 81, 343-348.
    Dun, E.A., Brewer, P.B., and Beveridge, C.A. (2009). Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci. 14, 364-372.
    Eisenreich, W., Schwarz, M., Cartayrade, A., Arigoni, D., Zenk, M.H., and Bacher, A. (1998). The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem. Biol. 5, R221-233.
    Engprasert, S., Taura, F., Kawamukai, M., and Shoyama, Y. (2004). Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq. BMC Plant Biol. 4, 18.
    Gavel, Y., Nilsson, L., and von Heijne, G. (1988). Mitochondrial targeting sequences. Why 'non-amphiphilic' peptides may still be amphiphilic. FEBS Lett 235, 173-177.
    Grunler, J., Ericsson, J., and Dallner, G. (1994). Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim. Biophys. Acta. 1212, 259-277.
    Guex, N., and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723.
    Hartmann, M.-A., and Bach, T.J. (2001). Incorporation of all-trans-farnesol into sterols and ubiquinone in Nicotiana tabacum L. cv Bright Yellow-2 cell cultures. Tetrahedron Lett. 42, 655-657.
    Hefner, J., Ketchum, R.E., and Croteau, R. (1998). Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch. Biochem. Biophys. 360, 62-74.
    Hemmerlin, A., Rivera, S.B., Erickson, H.K., and Poulter, C.D. (2003). Enzymes encoded by the farnesyl diphosphate synthase gene family in the Big Sagebrush Artemisia tridentata ssp. spiciformis. J. Biol. Chem. 278, 32132-32140.
    Hirooka, K., Bamba, T., Fukusaki, E., and Kobayashi, A. (2003). Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochem. J. 370, 679-686.
    Hsiao, Y.Y., Jeng, M.F., Tsai, W.C., Chuang, Y.C., Li, C.Y., Wu, T.S., Kuoh, C.S., Chen, W.H., and Chen, H.H. (2008). A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J. 55, 719-733.
    Hugueney, P., Bouvier, F., Badillo, A., Quennemet, J., d'Harlingue, A., and Camara, B. (1996). Developmental and stress regulation of gene expression for plastid and cytosolic isoprenoid pathways in pepper fruits. Plant Physiol. 111, 619-626.
    Kainou, T., Kawamura, K., Tanaka, K., Matsuda, H., and Kawamukai, M. (1999). Identification of the GGPS1 genes encoding geranylgeranyl diphosphate synthases from mouse and human. Biochim. Biophys. Acta. 1437, 333-340.
    Kloer, D.P., Welsch, R., Beyer, P., and Schulz, G.E. (2006). Structure and reaction geometry of geranylgeranyl diphosphate synthase from Sinapis alba. Biochemistry 45, 15197-15204.
    Koepp, A.E., Hezari, M., Zajicek, J., Vogel, B.S., LaFever, R.E., Lewis, N.G., and Croteau, R. (1995). Cyclization of geranylgeranyl diphosphate to taxa-4(5),11(12)-diene is the committed step of taxol biosynthesis in Pacific yew. J. Biol. Chem. 270, 8686-8690.
    Koyama, T., Tajima, M., Sano, H., Doi, T., Koike-Takeshita, A., Obata, S., Nishino, T., and Ogura, K. (1996). Identification of significant residues in the substrate binding site of Bacillus stearothermophilus farnesyl diphosphate synthase. . Biochemistry 35, 9533-9538.
    Kuntz, M., Romer, S., Suire, C., Hugueney, P., Weil, J.H., Schantz, R., and Camara, B. (1992). Identification of a cDNA for the plastid-located geranylgeranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening. Plant J. 2, 25-34.
    Kuzuyama, T. (2002). Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci. Biotechnol. Biochem. 66, 1619-1627.
    Laferriere, A., and Beyer, P. (1991). Purification of geranylgeranyl diphosphate synthase from Sinapis alba etioplasts. . Biochim. Biophys. Acta. 1077, 167-172.
    Liang, P.H., Ko, T.P., and Wang, A.H. (2002). Structure, mechanism and function of prenyltransferases. Eur. J. Biochem. 269, 3339-3354.
    Matsushita, Y., Kang, W., and Charlwood, B.V. (1996). Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 172, 207-209.
    Misawa, N., Nakagawa, M., Kobayashi, K., Yamano, S., Izawa, Y., Nakamura, K., and Harashima, K. (1990). Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J. Bacteriol. 172, 6704-6712.
    Ogura, K., and Koyama, T. (1998). Enzymatic aspects of isoprenoid chain elongation. Chem. Rev. 98, 1263-1276.
    Oh, S.k., Km, I.J., Shin, D.H., Yang, J., Kang, H., and Han, K.H. (2000). Cloning, characterization, and heterologous expression of afunctional geranylgeranyl pyrophosphate synthase from sunflower (Helianthusannuus L.). J. Plant Physiol. 157, 535-542.
    Ohnuma, S., Hirooka, K., Hemmi, H., Ishida, C., Ohto, C., and Nishino, T. (1996a). Conversion of product specificity of archaebacterial geranylgeranyl-diphosphate synthase. Identification of essential amino acid residues for chain length determination of prenyltransferase reaction. J. Biol. Chem. 271, 18831-18837.
    Ohnuma, S., Narita, K., Nakazawa, T., Ishida, C., Takeuchi, Y., Ohto, C., and Nishino, T. (1996b). A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product. J. Biol. Chem. 271, 30748-30754.
    Ohnuma, S., Nakazawa, T., Hemmi, H., Hallberg, A.M., Koyama, T., Ogura, K., and Nishino, T. (1996c). Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis. J. Biol. Chem. 271, 10087-10095.
    Okada, K., Saito, T., Nakagawa, T., Kawamukai, M., and Kamiya, Y. (2000). Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol. 122, 1045-1056.
    Olivier, L.M., and Krisans, S.K. (2000). Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. Biochim. Biophys. Acta. 1529, 89-102.
    Orlova, I., Nagegowda, D.A., Kish, C.M., Gutensohn, M., Maeda, H., Varbanova, M., Fridman, E., Yamaguchi, S., Hanada, A., Kamiya, Y., Krichevsky, A., Citovsky, V., Pichersky, E., and Dudareva, N. (2009). The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 21, 4002-4017.
    Pan, Z., Herickhoff, L., and Backhaus, R.A. (1996). Cloning, characterization, and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles. Arch. Biochem. Biophys. 332, 196-204.
    Pateraki, I., and Kanellis, A.K. (2008). Isolation and functional analysis of two Cistus creticus cDNAs encoding geranylgeranyl diphosphate synthase. Phytochemistry 69, 1641-1652.
    Roise, D. (1997). Recognition and binding of mitochondrial presequences during the import of proteins into mitochondria. J. Bioenerg. Biomembr. 29, 19-27.
    Runquist, M., Ericsson, J., Thelin, A., Chojnacki, T., and Dallner, G. (1994). Isoprenoid biosynthesis in rat liver mitochondria. Studies on farnesyl pyrophosphate synthase and trans-prenyltransferase. J. Biol. Chem. 269, 5804-5809.
    Rusch, S.L., and Kendall, D.A. (1995). Protein transport via amino-terminal targeting sequences: common themes in diverse systems. Mol. Membr. Biol. 12, 295-307.
    Schatz, G., and Dobberstein, B. (1996). Common principles of protein translocation across membranes. Science 271, 1519-1526.
    Schmidt, A., and Gershenzon, J. (2007). Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation. Phytochemistry 68, 2649-2659.
    Schmidt, A., and Gershenzon, J. (2008). Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69, 49-57.
    Schmidt, A., Wachtler, B., Temp, U., Krekling, T., Seguin, A., and Gershenzon, J. (2010). A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol. 152, 639-655.
    Schwartz, S.H., Qin, X., and Zeevaart, J.A. (2003). Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 131, 1591-1601.
    Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381-3385.
    Sitthithaworn, W., Kojima, N., Viroonchatapan, E., Suh, D.Y., Iwanami, N., Hayashi, T., Noji, M., Saito, K., Niwa, Y., and Sankawa, U. (2001). Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis. Chem. Pharm. Bull. 49, 197-202.
    Sun, T.P., and Kamiya, Y. (1994). The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6, 1509-1518.
    Takaya, A., Zhang, Y.W., Asawatreratanakul, K., Wititsuwannakul, D., Wititsuwannakul, R., Takahashi, S., and Koyama, T. (2003). Cloning, expression and characterization of a functional cDNA clone encoding geranylgeranyl diphosphate synthase of Hevea brasiliensis. Biochim. Biophys. Acta. 1625, 214-220.
    Tarshis, L.C., Proteau, P.J., Kellogg, B.A., Sacchettini, J.C., and Poulter, C.D. (1996). Regulation of product chain length by isoprenyl diphosphate synthases. Proc. Natl. Acad. Sci. U S A 93, 15018-15023.
    Tholl, D. (2006). Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 9, 297-304.
    Tholl, D., Croteau, R., and Gershenzon, J. (2001). Partial purification and characterization of the short-chain prenyltransferases, gernayl diphospate synthase and farnesyl diphosphate synthase, from Abies grandis (grand fir). Arch. Biochem. Biophys. 386, 233-242.
    Tholl, D., Kish, C.M., Orlova, I., Sherman, D., Gershenzon, J., Pichersky, E., and Dudareva, N. (2004). Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16, 977-992.
    Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H., and Chen, H.H. (2004). Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol. 45, 831-844.
    van Schie, C.C., Ament, K., Schmidt, A., Lange, T., Haring, M.A., and Schuurink, R.C. (2007). Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J. 52, 752-762.
    von Heijne, G., Steppuhn, J., and Herrmann, R.G. (1989). Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180, 535-545.
    Waltner, M., Hammen, P.K., and Weiner, H. (1996). Influence of the mature portion of a precursor protein on the mitochondrial signal sequence. J. Biol. Chem. 271, 21226-21230.
    Wang, G., and Dixon, R.A. (2009). Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc. Natl. Acad. Sci. U S A 106, 9914-9919.
    Wang, K.C., and Ohnuma, S. (2000). Isoprenyl diphosphate synthases. Biochim. Biophys. Acta. 1529, 33-48.
    Waterman, R.J., and Bidartondo, M.I. (2008). Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J. Exp. Bot. 59, 1085-1096.
    Ye, Y., Fujii, M., Hirata, A., Kawamukai, M., Shimoda, C., and Nakamura, T. (2007). Geranylgeranyl diphosphate synthase in fission yeast is a heteromer of farnesyl diphosphate synthase (FPS), Fps1, and an FPS-like protein, Spo9, essential for sporulation. Mol. Biol. Cell 18, 3568-3581.
    Zhu, X.F., Suzuki, K., Okada, K., Tanaka, K., Nakagawa, T., Kawamukai, M., and Matsuda, K. (1997). Cloning and functional expression of a novel geranylgeranyl pyrophosphate synthase gene from Arabidopsis thaliana in Escherichia coli. Plant Cell Physiol. 38, 357-361.

    下載圖示 校內:2015-08-13公開
    校外:2015-08-13公開
    QR CODE