簡易檢索 / 詳目顯示

研究生: 劉安哲
Liou, An-Zhe
論文名稱: 以快速沉積法製備FA-鈣鈦礦反置型平面結構太陽能電池
Fast Deposition-Crystallization Procedure for Formamidinium lead iodide inverted type planar-structured perovskite solar cell.
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 72
中文關鍵詞: 鈣鈦礦太陽能電池快速沉積法一步沉積法
外文關鍵詞: Perovskite Solar Cells, one step deposition, Fast Deposition-Crystallization
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以分成兩部分,第一部份為製備鈣鈦礦晶體薄膜表面形貌的控制。鈣鈦礦晶體薄膜的製程目前在國際上大約有四種,分別是1) Sequential Deposition, 2) One Step Deposition 3) Duel-Source Vapor Deposition and 4) Vapor-Assisted Solution Process。由於後兩項需要用到昂貴的設備和高溫製程,吾人採取前面的兩個低溫且較簡單、不須用到昂貴設備的製程來從事研發。以達到降低生產成本且維持一定轉換效率的方向研究。依實驗室環境最佳化鈣鈦礦晶體薄膜,吾人利用快速沉積法,以DMSO做為鈣鈦礦的高沸點極性溶液形成鈣鈦礦前驅溶液,利用快速沉積方法加工鈣鈦礦晶體薄膜(FDC-Fast Deposition-Crystallization Procedure),進而獲得致密且均勻的的鈣鈦礦晶體薄膜以改善薄膜的覆蓋性,減少孔隙的形成獲得良好的薄膜以提高元件效率以及其再現性與穩定性。製備結構Glass/PEDOT:PSS/MA-Perovskite/PCBM/Ag 製備元件,利用快速沉積法,運用甲苯加工鈣鈦礦晶體表面去除多餘DMSO進而獲得緻密且均勻的晶體薄膜。
    第二部分吾人則是參考快速沉積法,利用不同溶劑加工法製備FA-Perovskite薄膜,利用結構Glass/PEDOT:PSS/FA-Perovskite/PCBM/Ag 製備鈣鈦礦/富勒烯平面結構異質介面太陽能電池,由實驗結果發現利用快速沉積法對於主動層結晶性有很大的影響,更加直接反應在元件的效率表現上。接著,吾人再加以利用混和溶液之方法調配FA鈣鈦礦,將原本單一溶液DMSO加入部分比例的GBL(γ-丁內酯),希望藉由混和溶液的方式製備出更加緻密的主動層薄膜,最後經由實驗測試發現以比例:(DMSO:GBL= 7:3 v/v)為調配之參數所製備出的元件之光電轉換效率最佳。以SEM進行表面分析,發現使用混和溶液並配合快速沉積法所製備出薄膜其單一晶格更大且以混和溶液配合快速沉積法所製備出的鈣鈦礦晶體薄膜相較於單一溶液其表面更加緻密且表面覆蓋率高,進行SEM與AFM研究與亮,暗態電流-電壓曲線測量以探討各參數之趨勢。實驗結果與分析將在本論文中加以說明與討論。最終效率達4.596%。

    The cubic HC(NH2)2PbI3 (FAPbI3) perovskite has the measured band gap of 1.43 eV and its corresponding absorption edge reaches 870 nm. Therefore, the material is potentially superior than the CH3NH3PbI3 (MAPbI3) as the light harvester. The current work made FAPbI3 perovskite solar cell with structure, as shown in Fig. 1a, by depositing a thin layer of FA-perovskite film with a one-step process. This is done by spin-coating of 40 wt % PbI2 : FAI (at 1:1) mixture in DMSO to get a pure FAPbI3 perovskite phase. To adopt the solvent-induced, fast crystallization process, the spin-coated film is immediately exposed to different kinds of non-solvents, such as toluene, chlorobenzene to induce crystallization. All the spin-coated films can be annealed at relatively low temperatures such that the cell can be made on a flexible substrate. Six different kinds of non-solvents, such as toluene, chlorobenzene, dichlorobenzene, 2-isopronol, chloroform, acetonitrile, were used to test the crystallization of FA-perovskite film at 160oC. It was found that the non-solvent of 2-isopronol has the best result of crystallization and coverage of entire film. The crystallization process took only 10 mins in comparison to the traditional method of annealing for two hours at 160oC. In order to improve the cell performance, the mixed solution of DMSO and GBL was used to dissolve PbI2 : FAI (at 1:1). It is found that the mixing ratio for DMSO versus GBL at 7:3 v/v has the best crystallization and coverage of the entire film, as shown in Fig. 1, leading to significant increase in the cell performance. The Jsc of the solar cell with PbI2 and FAI dissolved in the mixture of DMSO and GBL at 7:3 can increase from 9.585 to 10.249 mA/cm2 and FF from 0.421 to 0.56 and PEC from 3.228% to 4.596%, as shown in Fig. 2 for I-V characteristic measurements. Further improvement in cell performance will be discussed in the conference.

    目 錄 口試合格證明 中文摘要 英文延伸摘要 致謝 目 錄 I 第一章 太陽能電池序論 1 1.1前言 1 1.2鈣鈦礦太陽能電池 2 1.3鈣鈦礦材料 3 1.4鈣鈦礦太陽能電池結構發展 4 1.5平面結構異質介面鈣鈦礦太陽能電池 5 1.6 FAPbI3-鈣鈦礦太陽能電池 7 1.7研究動機 8 第二章 理論基礎 9 2.1鈣鈦礦薄膜型態控制 9 2.1.1一步溶液沉積法 10 2.1.2二步溶液沉積法 11 2.1.3蒸鍍沉積法 12 2.1.4快速沉積結晶法(FDC) 12 2.2 遲滯效應(hysteresis) 13 2.3 鈣鈦礦太陽能電池的穩定性與未來研究發展 15 第三章 實驗方法及步驟 16 3.1 實驗材料 16 3.2 實驗設備 17 3.3 實驗製程 19 3.3.1 前置作業 19 3.3.2 元件製作流程 22 3.3.3.1 FA鈣鈦礦/富勒烯平面結構異質介面太陽能電池元件製備 22 3.3.3 實驗量測 24 第四章 實驗結果與討論 26 4.1 前言 26 4.2 FA鈣鈦礦太陽能電池之結構與能階示意圖 26 4.3 製備鈣鈦礦主動層薄膜 27 4.3.1 MA鈣鈦礦薄膜製備 27 4.3.2 FA 鈣鈦礦薄膜製備 27 4.4 FA鈣鈦礦製備太陽能電池元件 28 4.4.1不同FA鈣鈦礦主動層製備條件製備之元件分析 29 4.4.2不同主動層轉速之元件分析 30 4.4.3不同電子傳輸層轉速之元件分析 30 4.4.4以混合溶液之方式製備FA-鈣鈦礦元件 31 第五章 實驗總結與建議 32 圖目錄 圖1-1 太陽能世代演進 35 圖1-2 鈣鈦礦太陽能電池發展示意圖 35 圖1-3 鈣鈦礦材料晶體結構圖 36 圖1-4 鈣鈦礦太陽能電池結構演進 36 圖2-1平面異質介面鈣鈦礦太陽能電池結構示意圖 37 圖3- 1實驗製程流程圖 38 圖3- 2(a) 定義ITO圖案 39 圖3- 2(b) 清洗ITO片子 40 圖3-3 快速沉積法製備FA-鈣鈦礦主動層示意圖 41 圖3- 4元件面積定義圖(a)ITO定義區域(b)金屬定義區域 41 圖4-1元件結構示意圖 42 圖4-2元件能階示意圖 42 圖4-3 MA-鈣鈦礦製備兩種方法示意圖 43 圖4-4 MA-鈣鈦礦兩次沉積法示意圖 43 圖4-5兩次沉積法-浸入長晶時間不同形貌(SEM)Top view 44 圖4-6 MA-鈣鈦礦一步沉積法示意圖 44 圖4-7一步沉積法MA-鈣鈦礦-不同溶劑(SEM) Top view 45 圖4-8 MA-鈣鈦礦改良式一步沉積法示意圖 45 圖4-9 Ma-鈣鈦礦Top View (SEM) 46 圖4-10 製備FA-鈣鈦礦薄膜流程 46 圖4-11 製備FA-鈣鈦礦薄膜溶液測試 47 圖4-12製備FA-鈣鈦礦薄膜成膜比較圖 47 圖4-13製備FA-鈣鈦礦薄膜成膜比較圖 48 圖4-14製備FA-鈣鈦礦薄膜成膜比較SEM Top View 48 (1)一步沉積法(2)快速沉積法(尺度條皆為100um) 48 圖4-15製備FA-鈣鈦礦薄膜成膜比較AFM Roughness Analysis 49 圖4-16製備FA-鈣鈦礦元件最佳化之實驗架構 50 圖4-17製備FA-鈣鈦礦元件-主動層實驗架構 51 圖4-18 FA-鈣鈦礦元件(1)快速沉積法(2)一步沉積法 51 圖4-19鈣鈦礦元件效率圖-不同製備FA-鈣鈦礦製程 52 圖4-20 鈣鈦礦元件效率圖-FDC法製備-不同退火環境 53 圖4-21鈣鈦礦元件效率圖-不同主動層轉速 54 圖4-22鈣鈦礦元件效率圖-不同電子傳輸層轉速 55 圖4-23 以混和溶液製備FA-鈣鈦礦 56 圖4-24製備FA-鈣鈦礦薄膜成膜比較SEM Top View 56 圖4-25製備FA-鈣鈦礦薄膜成膜比較SEM Top View 57 圖4-26製備FA-鈣鈦礦薄膜成膜比較SEM Top View 57 圖4-27利用混和溶液製備元件實驗示意圖 58 圖4-28鈣鈦礦元件效率圖-不同主動層轉速(以混和溶液製備) 59 圖4-29 FA-鈣鈦礦太陽能電池元件之外部量子效率圖 59 圖4-30利用不同製程製備元件實驗示意圖 60 圖4-31利用不同製程製備元件實驗元件效率圖 61 表目錄 表4-1鈣鈦礦元件效率表-不同製備FA-鈣鈦礦薄膜製程 61 表4-2 鈣鈦礦元件效率表-FDC法製備主動層薄膜 62 表4-3鈣鈦礦元件效率表-不同主動層轉速 62 表4-4鈣鈦礦元件效率表-不同電子傳輸轉速 63 表4-5鈣鈦礦元件效率表-不同主動層層轉速(以混和溶液製備鈣鈦礦) 63 表4-6鈣鈦礦元件效率表-以不同製程製備鈣鈦礦太陽能電池元件比較 64 參考文獻 65

    [1] Loi, Maria Antonietta, and Jan C. Hummelen. , et al. "Hybrid solar cells: Perovskites under the Sun." Nature materials 12.12 (2013): 1087-1089.
    [2] Burschka, Julian, et al. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells." Nature 499.7458 (2013): 316-319.
    [3] Docampo, Pablo, et al. "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates." Nature communications 4 (2013).
    [4] Hodes, Gary, et al. "Perovskite-based solar cells." Science 342.6156 (2013): 317-318.
    [5] Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. , et al. "Efficient planar heterojunction perovskite solar cells by vapour deposition." Nature 501.7467 (2013): 395-398.
    [6] Stranks, Samuel D., et al. "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber." Science 342.6156 (2013): 341-344.
    [7] Xing, Guichuan, et al. "Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3." Science 342.6156 (2013): 344-347.
    [8] Liu, Dianyi, and Timothy L. Kelly. , et al. "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques." Nature photonics 8.2 (2014): 133-138.
    [9] Malinkiewicz, Olga, et al. "Perovskite solar cells employing organic charge-transport layers." Nature Photonics 8.2 (2014): 128-132.
    [10] Yella, Aswani, et al. "Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency." Nano letters 14.5 (2014): 2591-2596.
    [11] Yella, Aswani, et al. "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency." science 334.6056 (2011): 629-634.
    [12] Zhou, Huanping, et al. "Interface engineering of highly efficient perovskite solar cells." Science 345.6196 (2014): 542-546.
    [13] Lee, Michael M., et al. "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites." Science 338.6107 (2012): 643-647.
    [14] Kojima, Akihiro, et al. "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells." Journal of the American Chemical Society 131.17 (2009): 6050-6051.
    [15] Im, Jeong-Hyeok,et al. "6.5% efficient perovskite quantum-dot-sensitized solar cell." Nanoscale 3.10 (2011): 4088-4093
    [16] H.-S. Kim et al., Sci. Rep., 2012, 2, 591
    [17] Lee, Michael M., et al. "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites." Science 338.6107 (2012): 643-647.
    [18] Zhou, Huanping, et al. "Interface engineering of highly efficient perovskite solar cells." Science 345.6196 (2014): 542-546.
    [19] Yang, Woon Seok, et al. "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange." Science (2015): aaa9272.
    [20] Ball, James M., et al. "Low-temperature processed meso-superstructured to thin-film perovskite solar cells." Energy & Environmental Science 6.6 (2013): 1739-1743.
    [21] Jeng, Jun‐Yuan, et al. "CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells." Advanced Materials 25.27 (2013): 3727-3732.
    [22] Docampo, Pablo, et al. "Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates." Nature communications 4 (2013).
    [23] You, Jingbi, et al. "Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility." (2014).
    [24] Bing-Huang Jiang,et al. "The Progress of Planar Type Perovskite Solar Cells"CHEMISTRY (The Chinese Chemical Society, Taipei)(2014)
    [25] Pellet, Norman, et al. "Mixed‐Organic‐Cation Perovskite Photovoltaics for Enhanced Solar‐Light Harvesting." Angewandte Chemie International Edition 53.12 (2014): 3151-3157.
    [26] Amat, Anna, et al. "Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin–orbit coupling and octahedra tilting." Nano letters 14.6 (2014): 3608-3616.
    [27] Hanusch, Fabian C., et al. "Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide." The Journal of Physical Chemistry Letters 5.16 (2014): 2791-2795.
    [28] Koh, Teck Ming, et al. "Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells." The Journal of Physical Chemistry C 118.30 (2013): 16458-16462.
    [29] Pang, Shuping, et al. "NH2CH=NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells." Chemistry of Materials 26.3 (2014): 1485-1491.
    [30] Stoumpos, Constantinos C., Christos D. Malliakas, and Mercouri G. Kanatzidis. Malinkiewicz, Olga, et al. "Perovskite solar cells employing organic charge-transport layers." Nature Photonics 8.2 (2014): 128-132. "Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties." Inorganic chemistry 52.15 (2013): 9019-9038.
    [31] Eperon, Giles E., et al. "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells." Energy & Environmental Science 7.3 (2014): 982-988.
    [32] Lv, Siliu, et al. "One-step, solution-processed formamidinium lead trihalide (FAPbI (3− x) Cl x) for mesoscopic perovskite–polymer solar cells." Physical Chemistry Chemical Physics 16.36 (2014): 19206-19211.
    [33] Lee, Jin‐Wook, et al. "High‐Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC (NH2) 2PbI3." Advanced Materials 26.29 (2014): 4991-4998.
    [34] Burschka, Julian, et al. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells." Nature 499.7458 (2013): 316-319.
    [35] Chen, Qi, et al. "Planar heterojunction perovskite solar cells via vapor-assisted solution process." Journal of the American Chemical Society 136.2 (2013): 622-625.
    [36] Seo, Jangwon, et al. "Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells." Energy & Environmental Science 7.8 (2014): 2642-2646.
    [37] Conings, Bert, et al. "Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach." Advanced Materials 26.13 (2014): 2041-2046.
    [38] Chen, Qi, et al. "Planar heterojunction perovskite solar cells via vapor-assisted solution process." Journal of the American Chemical Society 136.2 (2013): 622-625.
    [39] Liu, Dianyi, and Timothy L. Kelly. Malinkiewicz, Olga, et al. "Perovskite solar cells employing organic charge-transport layers." Nature Photonics 8.2 (2014): 128-132. "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques." Nature photonics 8.2 (2014): 133-138.
    [40] Im, Jeong-Hyeok, et al. "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells." Nature nanotechnology 9.11 (2014): 927-932.
    [41] Xiao, Zhengguo, et al. "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers." Energy & Environmental Science 7.8 (2014): 2619-2623.
    [42] Xiao, Zhengguo, et al. "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers." Energy & Environmental Science 7.8 (2014): 2619-2623.
    [43] Chiang, Chien-Hung, Zong-Liang Tseng, and Chun-Guey Wu. , et al. "Planar heterojunction perovskite/PC 71 BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process." Journal of Materials Chemistry A 2.38 (2014): 15897-15903.
    [44] Salau, A. M. , et al. "Fundamental absorption edge in PbI2: KI alloys." Solar Energy Materials 2.3 (1980): 327-332.
    [45] Mitzi, David B., M. T. Prikas, and K. Chondroudis. , et al. "Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique." Chemistry of materials 11.3 (1999): 542-544.
    [46] Malinkiewicz, Olga, et al. "Perovskite solar cells employing organic charge-transport layers." Nature Photonics 8.2 (2014): 128-132.
    [47] Roldán-Carmona, Cristina, et al. "Flexible high efficiency perovskite solar cells." Energy & Environmental Science 7.3 (2014): 994-997.
    [48] Stranks, Samuel D., et al. "Formation of Thin Films of Organic–Inorganic Perovskites for High‐Efficiency Solar Cells." Angewandte Chemie International Edition 54.11 (2015): 3240-3248.
    [49] Xiao, Manda, et al. "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells." Angewandte Chemie 126.37 (2014): 10056-10061.
    [50] Paek, Sanghyun, et al. "Improved External Quantum Efficiency from Solution-Processed (CH3NH3)PbI3 Perovskite/PC71BM Planar Heterojunction for High Efficiency Hybrid Solar Cells." The Journal of Physical Chemistry C 118.45 (2014): 25899-25905.
    [51] Jeon, Nam Joong, et al. "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells." Nature materials (2014).
    [52] Chen, Chun-Chao, et al. "One-step, low-temperature deposited perovskite solar cell utilizing small molecule additive." Journal of Photonics for Energy5.1(2015):057405-057405.
    [53] Yang, Xudong, Masatoshi Yanagida, and Liyuan Han. , et al. "Reliable evaluation of dye-sensitized solar cells." Energy & Environmental Science 6.1 (2013): 54-66.
    [54] Snaith, Henry J., et al. "Anomalous hysteresis in perovskite solar cells." The Journal of Physical Chemistry Letters 5.9 (2014): 1511-1515.
    [55] Unger, E. L., et al. "Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells." Energy & Environmental Science 7.11 (2014): 3690-3698.
    [56] Wang, Qi, et al. "Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process." Energy & Environmental Science 7.7 (2014): 2359-2365.
    [57] Xiao, Zhengguo, et al. "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers." Energy & Environmental Science 7.8 (2014): 2619-2623.
    [58] Shao, Yuchuan, et al. "Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells." Nature communications 5 (2014).
    [59] Lee, Michael M., et al. "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites." Science 338.6107 (2012): 643-647.
    [60] Hao, Feng, et al. "Lead-free solid-state organic-inorganic halide perovskite solar cells." Nature Photonics 8.6 (2014): 489-494.
    [61] Noel, Nakita K., et al. "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications." Energy & Environmental Science 7.9 (2014): 3061-3068.

    無法下載圖示 校內:2020-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE