| 研究生: |
陳銘祥 Chen, Ming-shiang |
|---|---|
| 論文名稱: |
鋁鈧合金之撞擊變形與差排結構特徵分析 Impact Deformation and Dislocation Substructure of Al-Sc Alloy |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 霍普金森桿 、鋁鈧合金 |
| 外文關鍵詞: | split-Hopkinson bar, Al-Sc alloy |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的為研究鋁鈧合金在高應變速率荷載情況下之撞擊變形行為,我們使用壓縮式霍普金森桿進行機械測試,訂應變速率條件為1200 s-1、3200 s-1和5800 s-1,及溫度條件為-100℃、25℃和300℃。
實驗結果顯示,鋁鈧合金之塑流應力值、加工硬化率、應變速率敏感性係數及熱活化體積皆會隨著應變量、應變速率和溫度範圍之變異而改變。固定溫度條件時,塑流應力值、加工硬化率以及應變速率敏感性係數皆會隨應變速率增加而增益,而熱活化體積則會下降。另一方面,固定應變速率時,塑流應力值、加工硬化率與應變速率敏感性係數會循溫度上升而變小,但是熱活化體積卻會增大。另外,我們論證Zerilli-Armstrong構成方程式,其可針對鋁鈧合金之撞擊變形行為提供精確之預測。
光學式電子顯微鏡之微觀結構分析可發現試件中有絕熱剪切帶形成,且剪切帶寬度會受到應變速率和溫度之影響。另外,掃描式電子顯微鏡之金相斷面觀察則可顯見破壞面具有韌窩組織特徵,該韌窩之外觀與密度取決於應變速率與溫度條件。除此之外,穿透式電子顯微鏡之微觀結構觀察可發覺差排密度、差排圈尺寸皆與應變速率、塑流應力值及溫度條件相關。最後,基地中之Al3Sc析出物可阻檔差排之移動遂導致強化材料之效果。
This paper employs a compressive split-Hopkinson bar to investigate the impact deformation behavior of Al-Sc alloy under high strain rate loading conditions of 1200 s-1, 3200 s-1 and 5800 s-1, respectively, at temperatures of -100℃, 25℃and 300℃. The experimental results indicate that the flow stress, work hardening rate, strain rate sensitivity and activation volume of Al-Sc alloy are all dependent on the strain, strain rate and testing temperature. For a constant temperature, the flow stress, work hardening rate and strain rate sensitivity increase with increasing strain rate, while the activation volume decreases. Conversely, for a constant strain rate, the flow stress, work hardening rate and strain rate sensitivity decrease with increasing temperature, while the activation volume increases. It is found that the impact deformation behaviour of Al-Sc alloy can be accurately described using the Zerilli-Armstrong constitutive equation.
Optical microscopy analyses reveal that adiabatic shear bands are formed in all the impacted specimens. The width of these shear bands is determined by the applied strain rate and temperature conditions. Furthermore, scanning electron microscopy fractographic observations show that the fracture surfaces are characterised by a dimple-like structure. The appearance and density of the dimples are strongly related to the strain rate and temperature. Transmission electron microscopy observations indicate that the dislocation density and cell size are related to the strain rate, flow stress and temperature. Finally, the Al3Sc precipitations in the matrix suppress dislocation motion and prompt a significant strengthening effect.
[1] 劉文海, “鋁合金潛力產品與前景分析,” 金屬工業研究發展中心, pp. 54-65, pp. 175-176, 2004.
[2] Yu. A. Filatov, V. I. Yelagin and V. V. Zakharov, “New Al-Mg-Sc Alloys,” Materials Science and Engineering A, Vol. 280, pp. 97-101, 2000.
[3] J. Royset and N. Ryum, “Scandium in Aluminum Alloys,” International Materials Reviews, Vol. 50, No.1, pp. 19-44, 2005.
[4] Z. Ahmad, “The Properties and Application of Scandium-Reinforced Aluminum,” Aluminum Composites, Vol. 55, No.2, pp. 35-39, 2003.
[5] K. Venkateswarlu, L. C. Pathak, A. K. Ray, Goutam Das, P. K. Verma, M. Kumar and R. N. Ghosh, “Microstructure, Tensile Strength and Wear Behaviour of Al-Sc Alloy,” Materials Science and Engineering A, Vol. 383, pp. 374-380, 2004.
[6] Kun. Yu, W. Li, S. Li and J. Zhao, “Mechanical Properties and Microstructure of Aluminum Alloy 2618 with Al3(Sc, Zr) Phases,” Materials Science and Engineering A, Vol. 368, pp. 88-93, 2004.
[7] T. Aiura, N. Sugawara and Y. Miura, “The Effect of Scandium on the As-Homogenized Microstructure of 5083 Alloy for Extrusion,” Materials Science and Engineering A, Vol. 280, pp. 139-145, 2000.
[8] D. N. Seidman, E. A. Marquis and D. C. Dunand, “Precipitation Strengthening at Ambient and Elevated Temperatures of Heat-Treatable Al(Sc) Alloys,” Acta Materialia, Vol. 50, pp. 4021-4035, 2002.
[9] C. B. Fuller, A. R. Krause, D. C. Dunand and D. N. Seidman, “Microstructure and Mechanical Properties of a 5754 Aluminum Alloy Modified by Sc and Zr Additions,” Materials Science and Engineering A, Vol. 338, pp. 8-16, 2002.
[10] K. D. Woo, S. W. Kim, C. H. Yang, T. P. Lou and Y. Miura, “Effects of Grain Size on High Temperature Deformation Behavior of Al-4Mg-0.4Sc Alloy,” Materials Letters, Vol. 57, pp. 1903-1909, 2003.
[11] A. F. Norman, K. Hyde, F. Costello, S. Thompson, S. Birley and P. B. Prangnell, “Examination of the Effect of Sc on 2000 and 7000 Series Aluminum Alloy Castings: for Improvements in Fusion Welding,” Materials Science and Engineering A, Vol. 354, pp. 188-198, 2003.
[12] M. Cabibbo, E. Evangelista, C. Scalabroni and E. Bonetti, “A Transmission Electron Microscopy Study of the Role of Sc+Zr Addition to a 6082-T8 Alloy Subjected to Equal Channel Angular Pressing,” Materials Science Forum, Vols. 503-504, pp. 841-846, 2006.
[13] R. Roumina, C. W. Sinclair and F. Fazeli, “Precipitation and Recrystallization in an Al-Mg-Sc Alloy,” Materials Science Forum, Vols. 519-521, pp. 1647-1652, 2006.
[14] V. G. Davydov, T. D. Rostova, V. V. Zakharov, Yu. A. Filatov and V. I. Yelagin, “Scientific Principles of Making an Alloying Addition of Scandium to Aluminum Alloys,” Materials Science and Engineering A, Vol. 280, pp. 30-36, 2000.
[15] E. A. Marquis and D. N. Seidman, “Nanoscale Structural Evolution of Al3Sc Precipitates in Al(Sc) Alloys,” Acta Materialia, Vol. 49, pp. 1909-1919, 2001.
[16] S. Iwamura and Y. Miura, “Loss in Coherency and Coarsening Behavior of Al3Sc Precipitates,” Acta Materialia, Vol. 52, pp. 591-600, 2004.
[17] J. Royset and N. Ryum, “Some Comments on the Misfit and Coherency Loss of Al3Sc Particles in Al-Sc Alloys,” Scripta Materialia, Vol. 52, pp. 1275-1279, 2005.
[18] F. Musin, R. Kaibyshev, Y. Motohashi and G. Itoh, “High Strain Rate Superplasticity in a Commercial Al-Mg-Sc Alloy,” Scripta Materialia, Vol. 50, pp. 511-516, 2004.
[19] Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes and T. G. Langdon, “Superplastic Forming at High Strain Rates After Severe Plastic Deformation,” Acta Materialia, Vol. 48, pp. 3633-3640, 2000.
[20] O. Roder, T. Wirtz, A. Gysler and G. , “Fatigue Properties of Al-Mg Alloys with and without Scandium,” Materials Science and Engineering A, Vol. 234-236, pp. 181-184, 1997.
[21] V. V. Zakharov and T. D. Rostova, “On the Possibility of Scandium Alloying of Copper-Containing Aluminum Alloys,” Metal Science and Heat Treatment, Vol. 37, Nos. 1-2, pp. 65-69, 1995.
[22] A. K. Mukhopadhyay, K. S. Prasad, V. Kumar, G. M. Reddy, S. V. Kamat and V. K. Varma, “Key Microstructural Features Responsible for Improved Stress Corrosion Cracking Resistance and Weldability in 7xxx Series Al Alloys Containing Micro/Trace Alloying Additions,” Materials Science Forum, Vols. 519-521, pp. 315-320, 2006.
[23] R. D. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications,” pp. 22-26, 1980.
[24] U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
[25] U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression,” Exp. Mech., Vol. 3, pp. 81-88, 1983.
[26] W. S. Lee and C. F. Lin, “Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures,” Materials Science and Engineering A, Vol. 241, pp. 48-59, 1998.
[27] J. D. Campbell, “Dynamic Plasticity: Macroscopic and Microscopic Aspects,” Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.
[28] D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
[29] J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Phil. Mag., Vol. 21, pp. 63-82, 1970.
[30] A. Seeger, “Dislocation and Mechanical Properties of Crystals,” Phil. Mag., Vol. 46, pp. 1194-1217, 1955.
[31] U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” J. Mech. Phys. Solids, Vol. 13, pp. 41-49, 1965.
[32] W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
[33] J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
[34] Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 104-124, 1992.
[35] Z. Gronostajski, “The Constitutive Equations for FEM Analysis,” Journal of Materials Processing Technology, Vol. 106, pp. 40-44, 2000.
[36] L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, “A Basic Approach for Strain Rate Dependent Energy Conversion Including Heat Transfer Effects: An Experimental and Numerical Study,” Journal of Materials Processing Technology, Vol. 182, pp. 319-326, 2007.
[37] H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth,” International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
[38] F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
[39] D. Umbrello, R. M’Saoubi and J. C. Outeiro, “The Influence of Johnson-Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel,” International Journal of Machine Tools & Manufacture, Vol. 47, pp. 462-470, 2007.
[40] U. R. Andrade, M. A. Meyers and A. H. Chokshi, “Constitutive Description of Work- and Shock-Hardened Copper,” Scripta Metallurgica et Materialia, Vol. 30, No. 7, pp. 933-938, 1994.
[41] B. Forbord, H. Hallem, N. Ryum and K. Marthinsen, “Precipitation and Recrystallisation in Al-Mn-Zr with and without Sc,” Materials Science and Engineering A, Vols. 387-389, pp. 936-939, 2004.
[42] L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 Stainless Steel,” Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
[43] U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
[44] W. S. Lee and C. Y. Liu, “Comparison of Dynamic Compressive Flow Behavior of Mild and Medium Steels over Wide Temperature Range,” Metallurgical and Materials Transactions A, Vol. 36, pp. 3175-3186, 2005.
[45] M. Cabibbo, E. Evangelista and M. Vedani, “Influence of Severe Plastic Deformations on Secondary Phase Precipitation in a 6082 Al-Mg-Si Alloy,” Metallurgical and Materials Transactions A, Vol. 36, pp. 1353-1364, 2005.
[46] A. L. Dons, “The Alstruc Homogenization Model for Industrial Aluminum Alloys,” Journal of Light Metals, Vol. 1, pp. 133-149, 2001.
[47] A. K. Gupta, D. J. Lloyd and S. A. Court, “Precipitation Hardening in Al-Mg-Si Alloys with and without Excess Si,” Materials Science and Engineering A, Vol. 316, pp. 11-17, 2001.
[48] D. J. Chakrabarti and D. E. Laughlin, “Phase elations and Precipitation in Al-Mg-Si Alloys with Cu Additions,” Progress in Materials Science, Vol. 49, pp. 389-410, 2004.
[49] A. K. Gupta, P. H. Marois and D. J. Lloyd, “Confirming Computer Calculations of Phase Stability with the Experimental Observations in Automotive Alloy AA6111,” Materials Science Forum, Vols. 519-521, pp. 177-182, 2006.
[50] P. Yu. Bryantsev, V. S. Zolotorevskiy and V. K. Portnoy, “ The Effect of Heat Treatment and Mn, Cu and Cr Additions on the Structure of Ingots of Al-Mg-Si-Fe Alloys,” Materials Science Forum, Vols. 519-521, pp. 401-406, 2006.
[51] B. Yang, F. Wang, J. S. Zhang, B. Q. Xiong and X. J. Duan, “The Effect of Mn on the Microstructure of Spray-Deposited Al-20Si-5Fe-3Cu-1Mg Alloy,” Scripta Materialia, Vol. 45, pp. 509-515, 2001.
[52] R. K. Ham, Phil. Mag., Vol. 6, pp. 1183, 1961.
[53] N. L. Isern, C. L. Perez, P. A. Gonzalez, L. Laborde and D. Patino, “Analysis of Structure and Mechanical Properties of AA5083 Aluminum Alloy Processed by ECAE,” Rev. Adv. Mater. Sci., Vol. 10, pp. 473-478, 2005.
[54] P. Schall, M. Feuerbacher, M. Bartsch, U. Messerschmidt and K. Urban, “Dislocation Density Evolution upon Plastic Deformation of Al-Pd-Mn Single Quasicrystals,” Philosophical Magazine Letters, Vol. 79, pp. 785-796, 1999.
[55] Y. Himuro, K. Koyama and Y. Bekki, “Precipitation Behavior of Zirconium Compounds in Zr-bearing Al-Mg-Si Alloy,” Materials Science Forum, Vols. 519-521, pp. 501-506, 2006.
[56] V. Ocenasek and M. Slamova, “Resistance to Recrystallization due to Sc and Zr Addition to Al-Mg Alloys,” Materials Characterization, Vol. 47, pp. 157-162, 2001.
[57] Z. Yin, Q. Pan, Y. Zhang and F. Jiang, “Effect of Minor Sc and Zr on the Microstructure and Mechanical Properties of Al-Mg Based Alloys,” Materials Science and Engineering A, Vol. 280, pp. 151-155, 2000.
[58] Y. Harada and D. C. Dunand, “Thermal Expansion of Al3Sc and Al3(Sc0.75X0.25),” Scripta Materialia, Vol. 48, pp. 219-222, 2003.
[59] M. N. Desmukh, R. K. Pandey and A. K. Mukhopadhyay, “Fatigue Behavior of 7010 Aluminum Alloy Containing Scandium,” Scripta Materialia, Vol. 52, pp. 645-650, 2005.
[60] C. B. Fuller, D. N. Seidman and D. C. Dunand, “Mechanical Properties of Al(Sc,Zr) Alloys at Ambient and Elevated Temperatures,” Acta Materialia, Vol. 51, pp. 4803-4815, 2003.