簡易檢索 / 詳目顯示

研究生: 李宛儒
Lee, Wan-Ju
論文名稱: 以硼酸擔載鉑釕合金之氧化石墨烯在甲醇氧化反應之應用
Application of Graphene Oxide Loaded with Platinum/Ruthenium by Boric Acid for Methanol Oxidation
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 124
中文關鍵詞: 直接甲醇燃料電池甲醇氧化硼酸還原氧化石墨烯觸媒擔體陽極觸媒
外文關鍵詞: Direct methanol fuel cell, methanol oxidation, boric acid, reduced graphene oxide, catalyst support, anode catalyst
相關次數: 點閱:143下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為因應氣候變遷,開發乾淨能源已成趨勢。直接甲醇燃料電池具有低汙染、高效率、低噪音、免充電、進料來源廣且燃料儲存容易等優勢,在攜帶型裝置的應用上有極高發展潛力。然而甲醇氧化反應速率遠低於氫氣氧化反應速率,同時白金觸媒昂貴且易毒化,阻礙其商業化發展。本研究混合硼酸、鉑釕前驅物與氧化石墨烯以水熱法合成甲醇氧化觸媒,探討氧化石墨烯在還原前靜置於空氣的時間、不同還原方法、不同硼酸重量、不同水熱還原溫度、不同水熱還原時間等條件對觸媒特性之影響,並求得最佳製備條件以得最高甲醇氧化活性。
    XRD結果顯示,氧化石墨烯在還原前靜置於空氣中的時間會影響其層間距。新鮮製備的氧化石墨烯層間距(0.850 nm)大於靜置3個月的氧化石墨烯 (0.803 nm)。加入15.4倍氧化石墨烯重量的硼酸,在180 oC下加熱5小時合成觸媒進行電化學測試,電化學活性面積與甲醇氧化比活性皆隨靜置時間增加而下降。
    使用靜置3個月的氧化石墨烯,經由不同還原方法合成觸媒,電化學測試結果顯示同時還原氧化石墨烯與鉑釕合成觸媒,電化學活性面積為先水熱還原氧化石墨烯再擔載鉑釕之觸媒的2.09倍,比活性為3.06倍。
    使用新鮮製備的氧化石墨烯合成觸媒,在硼酸重量為15.4倍氧化石墨烯重量、水熱溫度為180 oC、加熱時間為5小時的條件下,白金觸媒在0.4V (vs. Ag/AgCl)有最大質量活性240 A/gPt及比活性1.46 s-1,為未在製程中加入硼酸所製觸媒的2.73倍及1.92倍,代表加入硼酸不僅能降低白金奈米粒徑、提升觸媒電化學活性面積,更在本質上提升甲醇氧化比活性。
    XPS結果顯示無論有無硼酸加入,皆無硼摻雜情形,然而隨著硼酸重量增加,碳材結構中C-O官能基比例下降,推測硼酸加入有助於移除氧化石墨烯中C-O官能基,降低碳材表面電荷傳輸阻力,進而提升甲醇氧化比活性。

    PtRu/rGO were synthesized by 1-step reduction or 2-step reduction. The highest MOR activity and specific activity was obtained when PtRu/rGO was synthesized by fresh GO and 1-step reduction, with the boric acid to GO weight ratio equaled 15.4 and hydrothermal condition was 180 oC for 5 hours. Regardless of addition of boric acid, there were no boron doping in carbon materials. However, contents of C-O functional groups decreased as the amounts of boric acid in the process increased, which may lead to lower charge transfer resistance and intrinsically increase the MOR activity.

    摘要 I 致謝 XI 目錄 XII 圖目錄 XVI 表目錄 XXV 第一章 緒論 1 1.1 前言 1 1.2 燃料電池起源與應用 1 1.3 燃料電池特點 2 1.4 燃料電池種類 3 1.4.1 氫氧燃料電池 3 1.4.2 直接甲醇燃料電池 4 1.4.3 鹼液型燃料電池 5 1.4.4 磷酸型燃料電池 5 1.4.5 熔融碳酸鹽型燃料電池 6 1.4.6 固態氧化物型燃料電池 6 第二章 原理與文獻回顧 8 2.1 直接甲醇燃料電池原理 8 2.2 甲醇電催化機制 9 2.3 觸媒擔體 10 2.3.1 石墨烯及拆層石墨 11 2.3.2 石墨烯及拆層石墨製備方法 11 2.3.3 石墨烯及拆層石墨表面修飾 14 2.3.3.1 硼原子摻雜修飾 15 2.3.3.2 硼酸鹽交聯修飾 18 2.4 直接甲醇燃料電池陽極觸媒 19 2.5 電化學原理 20 2.5.1 循環伏安法 20 2.5.2 線性掃描法 23 2.5.3 交流阻抗分析 26 2.6 研究動機與目的 32 第三章 實驗方法 34 3.1 研究樣品之命名 34 3.2 藥品 34 3.3 實驗儀器 35 3.4 觸媒製備 36 3.4.1 氧化石墨烯(Graphene oxide, GO)製備 36 3.4.2 一步還原鉑釕觸媒擔載於氧化石墨烯 37 3.4.2.1 無修飾鉑釕觸媒擔載於氧化石墨烯 37 3.4.2.2 以硼酸擔載鉑釕觸媒於氧化石墨烯 37 3.4.3 兩步還原鉑釕觸媒擔載於氧化石墨烯 38 3.4.3.1 製程中加入硼酸還原氧化石墨烯 38 3.4.3.2 含浸法製備鉑釕觸媒 38 3.4.4 有預先熱處理一步還原鉑釕觸媒於氧化石墨烯 39 3.5 觸媒之電化學活性測試 39 3.5.1 電極漿料製備 39 3.5.2 半電池反應組裝 40 3.5.3 循環伏安法 40 3.5.3.1 硫酸電解液中掃描預活化觸媒 40 3.5.3.2 甲醇及硫酸電解中掃描觀察觸媒特性 40 3.5.4 線性掃描法 41 3.5.5 交流阻抗分析 41 3.6 觸媒特性分析 41 3.6.1 X光繞射繞射儀 41 3.6.2 掃描式電子顯微鏡 41 3.6.3 穿透式電子顯微鏡 42 3.6.4 化學分析電子能譜儀 42 第四章 結果與討論 …..43 4.1 氧化石墨烯還原前在空氣中靜置時間對PtRu/rGO影響 43 4.1.1 X光繞射儀分析 43 4.1.2 化學電子能譜儀分析 46 4.1.3 掃描式電子顯微鏡分析 48 4.1.4 穿透式電子顯微鏡分析 48 4.1.5 電化學活性測試 50 4.2 不同還原方法對PtRu/rGO影響 53 4.2.1 X光繞射儀分析 53 4.2.2 化學電子能譜儀 55 4.2.3 掃描式電子顯微鏡分析 56 4.2.4 穿透式電子顯微鏡分析 57 4.2.5 電化學活性測試 59 4.3 有無預先熱處理對PtRu/rGO影響 62 4.3.1 X光繞射儀分析 62 4.3.2 化學電子能譜儀分析 63 4.3.3 穿透式電子顯微鏡分析 65 4.3.4 電化學活性測試 67 4.4 硼酸處理PtRu/rGO 70 4.4.1 前驅物中硼酸重量影響 70 4.4.1.1 X光繞射儀分析 70 4.4.1.2 化學電子能譜儀分析 71 4.4.1.3 掃描式電子顯微鏡分析 75 4.4.1.4 穿透式電子顯微鏡分析 76 4.4.1.5 觸媒活性測試 79 4.4.2 水熱溫度影響 84 4.4.2.1 X光繞射儀分析 84 4.4.2.2 化學電子能譜儀分析 85 4.4.2.3 掃描式電子顯微鏡分析 87 4.4.2.4 穿透式電子顯微鏡分析 88 4.4.3.5 觸媒活性測試 91 4.4.3 水熱還原時間影響 95 4.4.3.1 X光繞射儀分析 95 4.4.3.2 化學電子能譜儀分析 97 4.4.2.3 掃描式電子顯微鏡分析 97 4.4.2.4 穿透式電子顯微鏡分析 100 4.4.2.5 觸媒活性測試 102 4.5 綜合討論 107 第五章 結論 112 參考文獻 114

    [1] 袁正達, "從國際燃料電池發展現況與應用趨勢反思我國產業發展可行策略 " 能源簡析, pp. 1-8, 2016.
    [2] 許寧逸、顏溪成, "由碳能朝向氫能的燃料電池 " 科學發展, vol. 367期, 2003.
    [3] A. D. James Larminie, "Fuel cell systems explained," Wiley, 2003.
    [4] 石井弘毅, "圖解燃料電池," 世茂出版有限公司, 2008.
    [5] B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature, vol. 414, pp. 345-352, 2001.
    [6] D. Banham, S. Ye, K. Pei, J.-i. Ozaki, T. Kishimoto, and Y. Imashiro, "A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells," Journal of Power Sources, vol. 285, pp. 334-348, 2015.
    [7] C. M. Branco, S. Sharma, M. M. de Camargo Forte, and R. Steinberger-Wilckens, "New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells," Journal of Power Sources, vol. 316, pp. 139-159, 2016.
    [8] 賴秋助, "E世代的智慧要求─直接甲醇小型燃料電池系統的發展," 能源報導, p.8, 2004.
    [9] B. C. Ong, S. K. Kamarudin, M. S. Masdar, and U. A. Hasran, "Applications of graphene nano-sheets as anode diffusion layers in passive direct methanol fuel cells (DMFC)," International Journal of Hydrogen Energy, vol. 42, pp. 9252-9261, 2017.
    [10] 黃鎮江, "燃料電池," 全華科技圖書, 2003.
    [11] A. K. Shukla and R. K. Raman, "Methanol-Resistant Oxygen-Reduction Catalysts for Direct Methanol Fuel Cells," Annual Review of Materials Research, vol. 33, pp. 155-168, 2003.
    [12] H. Bahrami and A. Faghri, "Review and advances of direct methanol fuel cells: Part II: Modeling and numerical simulation," Journal of Power Sources, vol. 230, pp. 303-320, 2013.
    [13] S. S. Munjewar, S. B. Thombre, and R. K. Mallick, "Approaches to overcome the barrier issues of passive direct methanol fuel cell – Review," Renewable and Sustainable Energy Reviews, vol. 67, pp. 1087-1104, 2017.
    [14] T. Frelink, W. Visscher, and J. A. R. van Veen, "On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt," Surface Science, vol. 335, pp. 353-360, 1995.
    [15] B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. Smotkin, E. Reddington, A. Sapienza, B. C. Chan, and T. E. Mallouk, "Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation 1," The Journal of Physical Chemistry B, vol. 102, pp. 9997-10003, 1998.
    [16] S. D. Lin, T.-C. Hsiao, J.-R. Chang, and A. S. Lin, "Morphology of carbon supported Pt− Ru electrocatalyst and the CO tolerance of anodes for PEM fuel cells," The Journal of Physical Chemistry B, vol. 103, pp. 97-103, 1999.
    [17] E. Antolini, J. R. C. Salgado, and E. R. Gonzalez, "The methanol oxidation reaction on platinum alloys with the first row transition metals," Applied Catalysis B: Environmental, vol. 63, pp. 137-149, 2006.
    [18] C.-C. Ting, C.-H. Liu, C.-Y. Tai, S.-C. Hsu, C.-S. Chao, and F.-M. Pan, "The size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanism," Journal of Power Sources, vol. 280, pp. 166-172, 2015.
    [19] L. Li and Y. Xing, "Pt− Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts," The Journal of Physical Chemistry C, vol. 111, pp. 2803-2808, 2007.
    [20] S. K. Meher, Rao, G. Ranga, "Morphology-controlled promoting activity of nanostructured MnO2 for methanol and ethanol electrooxidation on Pt/C," The Journal of Physical Chemistry C, vol. 117, pp. 4888-4900, 2013.
    [21] J. Shim, C.-R. Lee, H.-K. Lee, J.-S. Lee, and E. J. Cairns, "Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell," Journal of Power Sources, vol. 102, pp. 172-177, 2001.
    [22] M. Takahashi, T. Mori, F. Ye, A. Vinu, H. Kobayashi, and J. Drennan, "Design of high-quality Pt–CeO2 composite anodes supported by carbon black for direct methanol fuel cell application," Journal of the American Ceramic Society, vol. 90, pp. 1291-1294, 2007.
    [23] S. Yu, Q. Liu, W. Yang, K. Han, Z. Wang, and H. Zhu, "Graphene–CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells," Electrochimica Acta, vol. 94, pp. 245-251, 2013.
    [24] M. A. Scibioh, S.-K. Kim, E. A. Cho, T.-H. Lim, S.-A. Hong, and H. Y. Ha, "Pt-CeO2/C anode catalyst for direct methanol fuel cells," Applied Catalysis B: Environmental, vol. 84, pp. 773-782, 2008.
    [25] H. Huang and X. Wang, "Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells," Journal of Materials Chemistry A, vol. 2, pp. 6266-6291, 2014.
    [26] S. Sharma and B. G. Pollet, "Support materials for PEMFC and DMFC electrocatalysts—A review," Journal of Power Sources, vol. 208, pp. 96-119, 2012.
    [27] S. Basri, S. K. Kamarudin, W. R. W. Daud, and Z. Yaakub, "Nanocatalyst for direct methanol fuel cell (DMFC)," International Journal of Hydrogen Energy, vol. 35, pp. 7957-7970, 2010.
    [28] Q. Jiang, L. Jiang, H. Hou, J. Qi, S. Wang, and G. Sun, "Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alkaline media: experimental and density functional theory studies," The Journal of Physical Chemistry C, vol. 114, pp. 19714-19722, 2010.
    [29] C.-W. Kuo, I. T. Lu, L.-C. Chang, Y.-C. Hsieh, Y.-C. Tseng, P.-W. Wu, and J.-F. Lee, "Surface modification of commercial PtRu nanoparticles for methanol electro-oxidation," Journal of Power Sources, vol. 240, pp. 122-130, 2013.
    [30] J. Zeng, "A simple eco-friendly solution phase reduction method for the synthesis of polyhedra platinum nanoparticles with high catalytic activity for methanol electrooxidation," Journal of Materials Chemistry, vol. 22, pp. 3170-3176, 2012.
    [31] T. Maiyalagan, T. O. Alaje, and K. Scott, "Highly stable Pt–Ru nanoparticles supported on three-dimensional cubic ordered mesoporous carbon (Pt–Ru/CMK-8) as promising electrocatalysts for methanol oxidation," The Journal of Physical Chemistry C, vol. 116, pp. 2630-2638, 2012.
    [32] F. Su, C. K. Poh, Z. Tian, G. Xu, G. Koh, Z. Wang, Z. Liu, and J. Lin, "Electrochemical behavior of Pt nanoparticles supported on meso- and microporous carbons for fuel cells," Energy & Fuels, vol. 24, pp. 3727-3732, 2010.
    [33] S.-J. Park, B.-J. Kim, and S.-Y. Lee, "Effect of surface modification of mesoporous carbon supports on the electrochemical activity of fuel cells," Journal of Colloid and Interface Science, vol. 405, pp. 150-156, 2013.
    [34] W. Tokarz, G. Lota, E. Frackowiak, A. Czerwiński, and P. Piela, "Fuel cell testing of Pt–Ru catalysts supported on differently prepared and pretreated carbon nanotubes," Electrochimica Acta, vol. 98, pp. 94-103, 2013.
    [35] H. Jiang, T. Zhao, C. Li, and J. Ma, "Functional mesoporous carbon nanotubes and their integration in situ with metal nanocrystals for enhanced electrochemical performances," Chemical Communications, vol. 47, pp. 8590-8592, 2011.
    [36] H. Huang, D. Sun, and X. Wang, "Low-defect MWNT–Pt nanocomposite as a high performance electrocatalyst for direct methanol fuel cells," The Journal of Physical Chemistry C, vol. 115, pp. 19405-19412, 2011.
    [37] Y. Piao, K. An, J. Kim, T. Yu, and T. Hyeon, "Sea urchin shaped carbon nanostructured materials: carbon nanotubes immobilized on hollow carbon spheres," Journal of Materials Chemistry, vol. 16, pp. 2984-2989, 2006.
    [38] J.-H. Zhang, J.-Y. Feng, T. Zhu, Z.-L. Liu, Q.-Y. Li, S.-Z. Chen, and C.-W. Xu, "Pd-doped Urchin-like MnO2-carbon Sphere Three-dimensional (3D) Material for Oxygen Evolution Reaction," Electrochimica Acta, vol. 196, pp. 661-669, 2016.
    [39] Y. Li, L. Tang, and J. Li, "Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites," Electrochemistry Communications, vol. 11, pp. 846-849, 2009.
    [40] Y. Li, W. Gao, L. Ci, C. Wang, and P. M. Ajayan, "Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation," Carbon, vol. 48, pp. 1124-1130, 2010.
    [41] S. M. Choi, M. H. Seo, H. J. Kim, and W. B. Kim, "Synthesis of surface-functionalized graphene nanosheets with high Pt-loadings and their applications to methanol electrooxidation," Carbon, vol. 49, pp. 904-909, 2011.
    [42] K. S. N. A. K. Geim "The rise of graphene," Nat. Mater. 183–191, vol. 6, pp. 183–19, 2007.
    [43] C. E. B. Dale A. C. Brownson, "Graphene electrochemistry an overview of potential applications.pdf," Analyst, vol. 135, pp. 2768-2778, 2010.
    [44] A. K. Geim and P. Kim, "Carbon wonderland," Scientific American, vol. 298, pp. 90-97, 2008.
    [45] H. Wang, T. Maiyalagan, and X. Wang, "Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications," ACS Catalysis, vol. 2, pp. 781-794, 2012.
    [46] F. G. A. H. C. Neto, N. M. R. Peres, K. S. Novoselov and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, p. 109, 2009.
    [47] T. Ndlovu, O. A. Arotiba, S. Sampath, R. W. Krause, and B. B. Mamba, "Reactivities of modified and unmodified exfoliated graphite electrodes in selected redox systems," International Journal of Electrochemical Science, vol. 7, pp. 9441-9453, 2012.
    [48] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, "Graphene based materials: Past, present and future," Progress in Materials Science, vol. 56, pp. 1178-1271, 2011.
    [49] M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, "High-concentration, surfactant-stabilized graphene dispersions," ACS Nano, vol. 4, pp. 3155-3162, 2010.
    [50] m, A. A. Green, and M. C. Hersam, "Solution phase production of graphene with controlled thickness via density differentiation," Nano Letters, vol. 9, pp. 4031-4036, 2009.
    [51] L. Dan, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, "Processable aqueous dispersions of graphene nanosheets," Nature Nanotechnology, vol. 3, pp. 101-105, 2008.
    [52] M. H. Rümmeli, C. G. Rocha, F. Ortmann, I. Ibrahim, H. Sevincli, F. Börrnert, J. Kunstmann, A. Bachmatiuk, M. Pötschke, M. Shiraishi, M. Meyyappan, B. Büchner, S. Roche, and G. Cuniberti, "Graphene: piecing it together," Advanced Materials, vol. 23, pp. 4471-4490, 2011.
    [53] W. S. Hummers and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
    [54] S. Kim, S. Zhou, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. de Heer, A. Bongiorno, and E. Riedo, "Room-temperature metastability of multilayer graphene oxide films," Nature Materials, vol. 11, pp. 544-549, 2012.
    [55] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nature Nanotechnology, vol. 3, pp. 270-274, 2008.
    [56] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, "Evaluation of solution-processed reduced graphene oxide films as transparent conductors," ACS Nano, vol. 2, pp. 463-470, 2008.
    [57] C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, "Electronic transport properties of individual chemically reduced graphene oxide sheets," Nano Letters, vol. 7, pp. 3499-3503, 2007.
    [58] A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, and I. Dékány, "Graphite oxide:  chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids," Langmuir, vol. 19, pp. 6050-6055, 2003.
    [59] H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H.-K. Jeong, J. M. Kim, J.-Y. Choi, and Y. H. Lee, "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, pp. 1987-1992, 2009.
    [60] Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, and H. Liu, "Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor," Electrochimica Acta, vol. 88, pp. 519-525, 2013.
    [61] C. Xu, R.-s. Yuan, and X. Wang, "Selective reduction of graphene oxide," New Carbon Materials, vol. 29, pp. 61-66, 2014.
    [62] X. Chen, D. Meng, B. Wang, B.-W. Li, W. Li, C. W. Bielawski, and R. S. Ruoff, "Rapid thermal decomposition of confined graphene oxide films in air," Carbon, vol. 101, pp. 71-76, 2016.
    [63] W. Lv, D.-M. Tang, Y.-B. He, C.-H. You, Z.-Q. Shi, X.-C. Chen, C.-M. Chen, P.-X. Hou, C. Liu, and Q.-H. Yang, "Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage," ACS Nano, vol. 3, pp. 3730-3736, 2009.
    [64] H.-B. Zhang, J.-W. Wang, Q. Yan, W.-G. Zheng, C. Chen, and Z.-Z. Yu, "Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide," Journal of Materials Chemistry, vol. 21, pp. 5392-5397, 2011.
    [65] Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, and K. P. Loh, "Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties," Chemistry of Materials, vol. 21, pp. 2950-2956, 2009.
    [66] M. Nasrollahzadeh, F. Babaei, P. Fakhri, and B. Jaleh, "Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites," Rsc Advances, vol. 5, pp. 10782-10789, 2015.
    [67] P. Sungjin and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature Nanotechnology, vol. 4, pp. 217-224, 2009.
    [68] L. T. Soo, K. S. Loh, A. B. Mohamad, W. R. W. Daud, and W. Y. Wong, "An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells," Applied Catalysis A: General, vol. 497, pp. 198-210, 2015.
    [69] P.-C. Ma, N. A. Siddiqui, G. Marom, and J.-K. Kim, "Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review," Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 1345-1367, 2010.
    [70] M. Deifallah, P. F. McMillan, and F. Corà, "Electronic and structural properties of two-dimensional carbon nitride graphenes," The Journal of Physical Chemistry C, vol. 112, pp. 5447-5453, 2008.
    [71] Z. Mou, X. Chen, Y. Du, X. Wang, P. Yang, and S. Wang, "Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea," Applied Surface Science, vol. 258, pp. 1704-1710, 2011.
    [72] D. R. Palaniuk, "Synthesis and characterization of nitrogen-doped graphene," Monterey, California. Naval Postgraduate School, 2012.
    [73] H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, and Z. Liu, "Synthesis of boron-doped graphene monolayers using the sole solid feedstock by chemical vapor deposition," Small, vol. 9, pp. 1316-1320, 2013.
    [74] J.-h. Ma, L. Wang, X. Mu, and L. Li, "Nitrogen-doped graphene supported Pt nanoparticles with enhanced performance for methanol oxidation," International Journal of Hydrogen Energy, vol. 40, pp. 2641-2647, 2015.
    [75] B. Xiong, Y. Zhou, Y. Zhao, J. Wang, X. Chen, R. O’Hayre, and Z. Shao, "The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation," Carbon, vol. 52, pp. 181-192, 2013.
    [76] L. Tao, S. Dou, Z. Ma, A. Shen, and S. Wang, "Simultaneous Pt deposition and nitrogen doping of graphene as efficient and durable electrocatalysts for methanol oxidation," International Journal of Hydrogen Energy, vol. 40, pp. 14371-14377, 2015.
    [77] X. Xu, Y. Zhou, T. Yuan, and Y. Li, "Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea," Electrochimica Acta, vol. 112, pp. 587-595, 2013.
    [78] M. L. X. Bo, C. Han, L. Guo, Electrochimica Acta, vol. 113, p. 582, 2014.
    [79] P. Lazar, R. Zboril, M. Pumera, and M. Otyepka, "Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties," Physical Chemistry Chemical Physics, vol. 16, pp. 14231-14235, 2014.
    [80] X. Li, L. Fan, Z. Li, K. Wang, M. Zhong, J. Wei, D. Wu, and H. Zhu, "Boron doping of graphene for graphene–silicon p–n junction solar cells," Advanced Energy Materials, vol. 2, pp. 425-429, 2012.
    [81] X. Bo, M. Li, C. Han, and L. Guo, "The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts," Electrochimica Acta, vol. 114, pp. 582-589, 2013.
    [82] J. Lu, Y. Zhou, X. Tian, X. Xu, H. Zhu, S. Zhang, and T. Yuan, "Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation," Applied Surface Science, vol. 317, pp. 284-293, 2014.
    [83] L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, "Synthesis, structure, and properties of boron- and nitrogen-doped graphene," Advanced Materials, vol. 21, pp. 4726-4730, 2009.
    [84] X. Xu, T. Yuan, Y. Zhou, Y. Li, J. Lu, X. Tian, D. Wang, and J. Wang, "Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media," International Journal of Hydrogen Energy, vol. 39, pp. 16043-16052, 2014.
    [85] A. Pullamsetty, M. Subbiah, and R. Sundara, "Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells," International Journal of Hydrogen Energy, vol. 40, pp. 10251-10261, 2015.
    [86] Q. Hao, X. Xia, W. Lei, W. Wang, and J. Qiu, "Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors," Carbon, vol. 81, pp. 552-563, 2015.
    [87] V. Thirumal, A. Pandurangan, R. Jayavel, and R. Ilangovan, "Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications," Synthetic Metals, vol. 220, pp. 524-532, 2016.
    [88] Y. Wang, C. Wang, Y. Wang, H. Liu, and Z. Huang, "Boric acid assisted reduction of graphene oxide: A promising material for sodium-ion batteries," ACS Applied Materials & Interfaces, vol. 8, pp. 18860-18866, 2016.
    [89] Z. Tian, C. Xu, J. Li, G. Zhu, J. Wu, Z. Shi, and Y. Wang, "A facile preparation route for highly conductive borate cross-linked reduced graphene oxide paper," New Journal of Chemistry, vol. 39, pp. 6907-6913, 2015.
    [90] Z. An, O. C. Compton, K. W. Putz, L. C. Brinson, and S. T. Nguyen, "Bio-inspired borate cross-linking in ultra-stiff graphene oxide thin films," Advanced Materials, vol. 23, pp. 3842-3846, 2011.
    [91] A. Walther, I. Bjurhager, J.-M. Malho, J. Pere, J. Ruokolainen, L. A. Berglund, and O. Ikkala, "Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways," Nano Letters, vol. 10, pp. 2742-2748, 2010.
    [92] M. A. O'Neill, D. Warrenfeltz, K. Kates, P. Pellerin, T. Doco, A. G. Darvill, and P. Albersheim, "Rhamnogalacturonan-II, a pectic polysaccharide in the walls of growing plant cell, forms a dimer that is covalently cross-linked by a borate ester: in vitro conditions for the formation and hydrolysis of the dimer" Journal of Biological Chemistry, vol. 271, pp. 22923-22930, September 13, 1996.
    [93] K. Shahzadi, I. Mohsin, L. Wu, X. Ge, Y. Jiang, H. Li, and X. Mu, "Bio-based artificial nacre with excellent mechanical and barrier properties realized by a facile in situ reduction and cross-linking reaction," ACS Nano, vol. 11, pp. 325-334, 2017.
    [94] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, and D. P. Wilkinson, "A review of anode catalysis in the direct methanol fuel cell," Journal of Power Sources, vol. 155, pp. 95-110, 2006.
    [95] M. Watanabe, M. Uchida, and S. Motoo, "Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 229, pp. 395-406, 1987.
    [96] L. Xiong and A. Manthiram, "Catalytic activity of Pt–Ru alloys synthesized by a microemulsion method in direct methanol fuel cells," Solid State Ionics, vol. 176, pp. 385-392, 2005.
    [97] S. Rojas, F. J. García-García, S. Järas, M. V. Martínez-Huerta, J. L. G. Fierro, and M. Boutonnet, "Preparation of carbon supported Pt and PtRu nanoparticles from microemulsion," Applied Catalysis A: General, vol. 285, pp. 24-35, 2005.
    [98] H.-S. Oh, J.-G. Oh, Y.-G. Hong, and H. Kim, "Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications," Electrochimica Acta, vol. 52, pp. 7278-7285, 2007.
    [99] C. Bock, C. Paquet, M. Couillard, G. A. Botton, and B. R. MacDougall, "Size-selected synthesis of PtRu nano-catalysts:  reaction and size control mechanism," Journal of the American Chemical Society, vol. 126, pp. 8028-8037, 2004.
    [100] Y. Wang, J. Liu, L. Liu, and D. D. Sun, "High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid," Nanoscale Research Letters, vol. 6, p. 241, 2011.
    [101] Y. Zhu, H. Uchida, T. Yajima, and M. Watanabe, "Attenuated total reflection− Fourier transform infrared study of methanol oxidation on sputtered Pt film electrode," Langmuir, vol. 17, pp. 146-154, 2001.
    [102] Y.-C. Lin, H.-L. Chou, M.-C. Tsai, B.-J. Hwang, L. S. Sarma, Y.-C. Lee, and C.-I. Chen, "Combined experimental and theoretical investigation of nanosized effects of Pt catalyst on their underlying methanol electro-oxidation activity," The Journal of Physical Chemistry C, vol. 113, pp. 9197-9205, 2009.
    [103] 楊明長, "高分子電解質燃料電池觸媒活性檢測方法與判定準則研究委辦計畫," 經濟部標準檢驗局期末報告, 2011.
    [104] M. Hogarth and G. Hards, "Direct methanol fuel cells," Platinum Metals Review, vol. 40, pp. 150-159, 1996.
    [105] E. Barsoukov and J. R. Macdonald, "Impedance spectroscopy theory, experiment, and applications," 2005.
    [106] 林賜岱, "直接甲醇燃料電池陽極反應之研究," 國立台灣科技大學化學工程學系碩士論文, 2002.
    [107] C. M. Brett and M. O. Breet, "Electrochemistry: principles, methods, and applications," Oxford, New York, p. 405, 1993.
    [108] A. J. Bard and L. R. Faulkner, Electrochemical methods fundamentals and Applications, Wiley, 2001.
    [109] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
    [110] 謝宜女均, "以瞬間升溫法合成氮摻雜石墨烯及其在質子交換膜燃料電池陰極觸媒擔體之應用," 國立成功大學化學工程學系碩士論文, 2014.
    [111] G. V. Reddy, P. Raghavendra, B. Ankamwar, P. S. Chandana, S. S. Kumar, and L. S. Sarma, "Ultrafine Pt–Ru bimetallic nanoparticles anchored on reduced graphene oxide sheets as highly active electrocatalysts for methanol oxidation," Materials Chemistry Frontiers, vol. 1, pp. 757-766, 2017.
    [112] L. Sun, H. Wang, K. Eid, S. M. Alshehri, V. Malgras, Y. Yamauchi, and L. Wang, "One-step synthesis of dendritic bimetallic PtPd nanoparticles on reduced graphene oxide and its electrocatalytic properties," Electrochimica Acta, vol. 188, pp. 845-851, 2016.
    [113] Y. Shen, Z. Zhang, R. Long, K. Xiao, and J. Xi, "Synthesis of ultrafine Pt nanoparticles stabilized by pristine graphene nanosheets for electro-oxidation of methanol," ACS applied materials & interfaces, vol. 6, pp. 15162-15170, 2014.
    [114] D. Chen, Y. Zhao, X. Peng, X. Wang, W. Hu, C. Jing, S. Tian, and J. Tian, "Star-like PtCu nanoparticles supported on graphene with superior activity for methanol electro-oxidation," Electrochimica Acta, vol. 177, pp. 86-92, 2015.
    [115] S. Yu, Q. Liu, W. Yang, K. Han, Z. Wang, and H. Zhu, "Graphene–CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells," Electrochimica Acta, vol. 94, pp. 245-251, 2013.
    [116] T. H. T. Vu, T. T. T. Tran, H. N. T. Le, L. T. Tran, P. H. T. Nguyen, M. D. Nguyen, and B. N. Quynh, "Synthesis of Pt/rGO catalysts with two different reducing agents and their methanol electrooxidation activity," Materials Research Bulletin, vol. 73, pp. 197-203, 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE