簡易檢索 / 詳目顯示

研究生: 黃彥富
Huang, Yen-Fu
論文名稱: 研究磊晶可控制的六方氮化硼成長在碳化矽基板
Studies of the Epitaxially Controlled h-BN Grown on SiC Substrate
指導教授: 吳忠霖
Wu, Chung-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 51
中文關鍵詞: 六方氮化硼電漿輔助式分子束磊晶碳化矽石墨烯
外文關鍵詞: Hexagonal boron nitride (h-BN), Plasma-assisted molecular beam epitaxy (PA-MBE), Silicon carbide (SiC), Grphene
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 六方氮化硼(Hexagonal boron nitride, h-BN)薄膜在二維材料應用中極有潛力,並且近年來也被發現擁有室溫單光子發光的特徵,在量子光學也有應用潛力,而目前成長出品質良好h-BN 的團隊皆使用化學氣象磊晶成長在金屬基板上,如果需要應用則需要轉移至其他基板上,不僅可能產生缺陷,也會有轉移後晶格不匹配的問題,因此我們的目標是將六方氮化硼直接成長在可應用的基板上,避免轉移所會遇到的各種問題。
    本論文先在碳化矽基板上成長出適合之石墨烯基板,石墨烯基板以SEM 以及AFM 測量表面樣貌,並使用Raman 光譜測量石墨稀特徵,最後得到真空中1375℃,8 分鐘的成長條件,台階完整性較佳,並使用此基板做為成長h-BN 之基板。成長完的h-BN,一樣利用SEM 及AFM 測量表面形貌,並得到h-BN 成長呈現六角形,並且橫向成長擁有一穩定速度,當成長層平均數較高時,h-BN 會因為熱膨脹係數不同而產成皺褶,並從Raman 訊號額外的藍移中推測這些皺褶會提供額外的壓縮應力;成長平均層數較低的h-BN,並不會有皺褶,Raman 訊號也測得無應力的1367cm^-1特徵訊號,且從ARPES 中測得單一一條清晰的π-band 能帶,代表成長出單層且單晶的高品質h-BN。另外使用TEM 測量成長18hr 的h-BN 橫切面,得到成長層數約為4層,並且式層狀堆疊的結構。最後將h-BN 以RIE 處裡,得到與文獻中相似的單光子發光特徵。

    Hexagonal boron nitride (h-BN) have great potential in 2D material application and quantum emitter. In recent study, most high quality h-BN was grown on metal by chemical vapor deposition (CVD). Our goal is grow h-BN on graphene/SiC substrate directly by plasma-assisted molecular beam epitaxy (PA-MBE), and we successfully grow high quality h-BN. We check morphology of h-BN by scanning electron microscope (SEM) and Atomic force microscope (AFM), calculate number of layer by SEM and detect phonon vibration mode of h-BN by Raman spectroscopy. Finally, angle resolved photoemission spectroscopy (ARPES) verify that h-BN is single crystal.

    章節1. 緒論 1 1.1 研究動機 1 1.2 六方氮化硼(Hexagonal Boron Nitride,h-BN) 3 1.2.1 六方氮化硼特性 3 章節2. 實驗儀器及原理 5 2.1 電漿輔助式分子束磊晶系統(Plasma-assisted Molecular Beam Expitaxy,PA-MBE) 5 2.1.1 分子束磊晶(Molecular Beam Expitaxy,MBE) 5 2.1.2 分子束磊晶蒸鍍源(Effusion Cell) 6 2.1.3 射頻電漿(Radio Frequency Plasma,RF-Plasma) 6 2.2 掃描式電子顯微鏡(Scaning Electron Microscopy,SEM) 8 2.3 原子力顯微鏡(Atomic Force Microscopy,AFM) 10 2.4 拉曼光譜儀(Raman spectroscopy) 13 2.5 光致發光光譜儀(Photoluminescence Spectroscopy,PL) 14 2.6 角分辨光電子能譜(Angle resolved photoemission spectroscopy,ARPES) 15 2.7 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 16 2.8 反應離子蝕刻(Reactive-Ion Etching, RIE) 17 章節3. 實驗方法與量測 18 3.1 基板的選擇與製造 18 3.1.1 基板選擇 18 3.1.2 在SiC上製造石墨烯 18 3.2 六方氮化硼製造 19 3.3 六方氮化硼製造缺陷 19 3.4 測量與分析 20 3.4.1 電子顯微鏡分析 20 3.4.2 拉曼光譜分析 21 章節4. 結果與討論 23 4.1 石墨烯成長在碳化矽基板上 23 4.1.1 成長條件 23 4.1.2 原子力顯微鏡分析 24 4.1.3 掃描式電子顯微鏡分析 28 4.1.4 拉曼光譜分析 31 4.2 六方氮化硼成長在石墨稀/碳化矽基板上 33 4.2.1 基板選擇及成長條件 33 4.2.2 原子力顯微鏡分析 34 4.2.3 掃描試電子顯微鏡 36 4.2.4 拉曼光譜分析 40 4.2.5 角分辨光電子能譜分析 43 4.2.6 穿透式電子顯微鏡分析 44 4.2.7 光致發光光譜分析 45 章節5. 結論 47 章節6. 參照 49

    [1] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, pp. 419-425, 2013.
    [2] Mak, K. and Shan, J., "Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides," Nature Photon, vol. 10, pp. 216-226, 2016.
    [3] Dean, C., Young, A., Meric, I. et al, "Boron nitride substrates for high-quality graphene electronics," Nature Nanotech, vol. 5, pp. 722-726, 2010.
    [4] He, Y., Clark, G., Schaibley, J. et al., "Single quantum emitters in monolayer semiconductors," Nature Nanotech, vol. 10, pp. 497-502, 2015.
    [5] Toan Trong Tran et al., "Robust Multicolor Single Photon Emission from Point Defects in Hexagonal Boron Nitride," ACS nano, pp. 7331-7338, 2016.
    [6] Igor Aharonovich, Dirk Englund and Toth Milos, "Solid-state single-photon emitters," Nature Photon, vol. 10, pp. 631-641, 2016.
    [7] Tran, T., Bray, K., Ford, M. et al., "Quantum emission from hexagonal boron nitride monolayers," Nature Nanotech, vol. 11, pp. 37-41, 2015.
    [8] Joo Song Lee et al, "Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation," Science, vol. 362, pp. 817-821, 2018.
    [9] Wang, L., Xu, X., Zhang, L. et al., "Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper," Nature, vol. 570, pp. 91-95, 2019.
    [10] Nasim Alem et al., "Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy," Phys. Rev. B, vol. 80, p. 155425, 2009.
    [11] Woods, C., Britnell, L., Eckmann, A. et al., "Commensurate–incommensurate transition in graphene on hexagonal boron nitride," Nature Phys, vol. 10, pp. 451-456, 2014.
    [12] Cassabois, G., Valvin, P. & Gil, B., "Hexagonal boron nitride is an indirect bandgap semiconductor," Nature Photon, vol. 10, pp. 262-266, 2016.
    [13] Jang, S., Youn, J., Song, Y. et al., "Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric," Sci Rep, vol. 6, p. 30449, 2016.
    [14] Yoichi Kubota, Kenji Watanabe, Osamu Tsuda, Takashi Taniguchi, "Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure," vol. 317, pp. 932-934, 2007.
    [15] Lu Hua Li et al., "Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets," ACS Nano, vol. 8, pp. 1457-1462, 2014.
    [16] Park Systems, "Basic contact AFM & Dynamic Force Microscopy (DFM)".
    [17] Park Systems, “Phase Imaging / Phase Detection Microscopy (PDM)”.
    [18] NC state university, "JEOL 2000FX Handbook".
    [19] Emtsev, K., Bostwick, A., Horn, K. et al, "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide," Nature Mater, vol. 8, pp. 203-207, 2009.
    [20] J. Röhrl, M. Hundhausen, K. V. Emtsev, Th. Seyller, R. Graupner, and L. Ley, "Raman spectra of epitaxial graphene on SiC(0001)," Appl. Phys. Lett., vol. 92, p. 201918, 2008.
    [21] Pease, R. S., "An X-ray study of boron nitride," Acta Crystallographica, vol. 5, pp. 356-361, 1952.
    [22] Harris, Gary Lynn, Properties of silicon carbide, 1995, pp. 170-180.
    [23] D.K.L. Tsang, B.J. Marsden, S.L. Fok, G. Hall, "Graphite thermal expansion relationship for different," Carbon, vol. 43, pp. 2902-2906, 2005.
    [24] Qiran Cai et al., "Raman signature and phonon dispersion of atomically thin boron nitride," Nanoscale, vol. 9, pp. 3059-3067, 2017.
    [25] Ch. Androulidakis et al., "Strained hexagonal boron nitride: Phonon shift and Grüneisen parameter," Physical Review B, vol. 97, p. 241414.
    [26] Henck H et al., "Direct observation of the band structure in bulk hexagonal boron nitride," Phys. Rev. B, vol. 95, p. 085410, 2017.
    [27] Parravicini, E. Doni and G. P., "Energy Bands and Optical Properties oI Hexagonal Boron Nitride and Graphite," Nuovo Cim. B, vol. 64, p. 117, 1969.
    [28] Quan Huang, Dongli Yu et al., "First-principles study of O-BN: A sp3-bonding boron nitride allotrope," Journal of Applied Physics, vol. 112, p. 053518, 2012.

    無法下載圖示 校內:2025-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE