簡易檢索 / 詳目顯示

研究生: 李國鑫
Li, Guo-Sin
論文名稱: 殘差修正法於脈衝雷射加工熱傳分析之應用
Application of Residual Correction Method to Pulsed Laser Heating Process
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 77
中文關鍵詞: 有限差分法殘差修正法脈衝雷射加工熱傳
外文關鍵詞: finite difference method, residual correction method, pulse laser heating, heat transfer
相關次數: 點閱:197下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要探討脈衝雷射加工的熱傳現象,在熱對流的邊界條件下,利用有限差分法來離散暫態熱傳方程式及搭配殘差修正法,進而求得相對於物體溫度場分佈之正確解的近似上下限。所解得之近似上下限,不但在其平均值上有良好的精度,更可分析其數值解與解析解的最大可能誤差範圍。整體來說,殘差修正法為一種便利、效率高且具備高精確度的數值方法。
    在數值分析方面,首先以兩個一維暫態熱傳範例,來驗證殘差修正法於脈衝雷射加工上之正確性及熱傳分佈情形。其次,將該問題延伸至二維圓柱座標系統模擬探討脈衝雷射加工之熱傳分佈。最後,探討脈衝雷射應用於皮膚治療之表面及內部熱傳分佈,且藉由調整脈衝雷射強度參數及熱對流係數使其更符合真實治療的情況,以供臨床治療之參考。

    This study focused on the heating process of a pulse laser. Under boundary conditions of convection, the transient heat transfer equation is discretized using the finite difference method. Then, the approximate solution of the workpiece temperature field distribution can be obtained by residual correction. Using the residual correction method, the precise average value of upper and lower approximate solutions is achieved and the error range between the analytical solution and the numerical solution can be analyzed. As a result, the residual correction method is an effective numerical method with high accuracy.
    In this dissertation, one dimensional transient heat transfer cases are firstly used to verify the accuracy of pulse laser heating process using residual correction method. The heating process of pulse laser on a two dimensional cylindrical system is considered. An application of tissue treatment using pulse laser is also simulated and the heat transfer distributions of tissue surface and interior are demonstrated. By adjusting parameters of pulse laser intensity and heat transfer coefficients, the heat transfer distributions are in agreement with literature results. Therefore, the proposed heat transfer distribution can be used as a prior simulation of clinical treatment.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號表 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1殘差修正法 2 1.2.2脈衝雷射加工 4 1.3 本文架構 5 第二章 最大值原理及單調性 6 2.1前言 6 2.2一維最大值原理 6 2.2.1一維最大值原理之基礎概念 6 2.2.2邊界值問題之最大值原理 7 2.2.3初值問題之單調性 9 2.2.4非線性問題之單調性 11 2.3橢圓型方程之最大值原理 12 2.4拋物線型之最大值原理 13 第三章 使用有限差分於殘差修正法步驟 15 3.1有限差分法 15 3.2微分方程最大值原理與有限差分法之關聯 17 3.3殘差修正法之基本概念 20 3.4殘差修正法之解題步驟 22 第四章 實例分析 24 4.1 前言 24 4.2 一維暫態熱傳問題 24 4.2.1範例一 24 4.2.2範例二 32 4.3 二維暫態熱傳問題 42 4.3.1範例一 42 4.3.2範例二 50 4.4 脈衝雷射應用於皮膚治療之熱傳問題 58 第五章 結論與建議 71 5.1 結論 71 5.2 建議與展望 72 參考文獻 73 自述 77

    Aziz, A. and Hug, S. M. Enamul, “Perturbation solution for convecting fin with variable thermal conductivity”, Trans. ASME, J. of Heat Transfer, pp. 300-301, 1975.

    Aziz, A. and Na, T. Y., “Periodic heat transfer in fins with variable thermal parameters”, Int. J. Heat Mass Transfer, Vol. 24, pp. 1397-1404, 1981.

    Crandall, S. H., “Engineering Analysis”, McGraw-Hill, 1956.

    Chu, H. S., Chen, C. K. and Weng, C. I., “Transient response of circular pins”, Trans. ASME, J. of Heat Transfer, Vol. 105, pp. 205-208, 1983.

    Chu, S. S., and Chang, W. J., “Hybrid numerical method for transient analysis of two-dimensional pin fins with variable heat transfer coefficients”, Int. Commun. Heat Mass., Vol. 29, pp. 367-376, 2002.

    Chiu, C. H., Chen, C. K., “A decomposition method for solving the convective longitudinal fins with variable thermal conductivity”, Int. J. Heat Mass. Tran., Vol. 45, pp. 2067-2075, 2002.

    Chen, B. S., Tong, L. Y., Gu, Y. X., et al., “Transient heat transfer analysis of functionally graded materials using adaptive precise time integration and graded finite elements”, Number Heat Tr. B-Fund., Vol. 45, pp. 181-200, 2004.

    Eslinger, R. G., Chung B. T. F., “Periodic heat transfer in radiating 191 and convecting fins or fin arrays”, AIAA Journal , Vol. 17, pp.1134-1140, 1979.

    Garg, V. K., Velusamy, K., “On the heat transfer from a cylindrical fin”, Int. J. Heat Mass Transfer, Vol. 32, pp. 187-192, 1989.

    Ganji, D. D., Afrouzi, G. A., “Application of variational iteration method and homotopy-perturbation method for nonlinear heat diffusion and heat transfer equations”, Phys. Lett. A, Vol. 368, pp. 450-457, 2007.

    Heggs, P. J., Ingham, D. B. and Manzoor, M., “The effects of 190 nonuniform heat transfer from an annular fin of triangular profile”, Trans. ASME, J. of Heat Transfer, Vol. 103, pp. 184-185, 1981.

    He, Y. F., Du, D., Sun, Z. G., Chen, Q. A., and Pan, J. U., “Analytical solution and experimental verification for pulsed laser heating process with convective boundary condition”, Science in China Ser. E Engineering and Materials Science, vol. 47,No. 3, pp. 305-319, 2004.

    Jaunich, M. G., Raje, S. Y., Kim, K. G., Mitra, K. N., and Guo, Z. X., “Bio-heat transfer analysis during short pulse laser irradiation of tissues”, International Journal of Heat and Mass Transfer, vol. 51, pp. 5511-5521, 2008.

    Ladde, G. S., Lakshmikantham, V. and Vatsala, A. S., “Monotone iterative techniques for nonlinear differential equations”, Wiley, Eastern Distribution Center, NJ, 1985.

    Liu, L. H., Tan, J. Y., “Meshless local Petrov-Galerkin approach for coupled radiative and conductive heat transfer”, Int. J. Therm. Sci., Vol. 46, pp. 672-681, 2007.

    Lin, C. T., and Liu, K. C., “Estimation for the heating effect of magnetic nanoparticles in perfused tissues”, International Communications in Heat and Mass Transfer, vol. 36, pp. 241-244, 2009.

    Muzzio, A., ”Approximate solution for convective fins with variable thermal conductivity”, Trans. ASME, J. of Heat Transfer, pp.680-682, 1976.

    Mao, J. and Rooke, S., “Transient analysis of extended surfaces with convective tip”, Int. Comm. Heat Mass Transfer, Vol. 21, pp. 85-94, 1994.

    Protter, M. H., “Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs”, NJ ,1967.

    Ready, J. F., “Effect due to absorption of laser radiation”, J Appl Phys, vol. 36, pp. 462-470, 1963

    Shen, W. S., Zhang, J., and Yang, F. Q. “Three-dimensional model on thermal response of skin subject to laser heating”, Computer Methods in Biomechanics and Biomedical Engineering, vol. 8, No. 2, pp. 115-125, 2005.

    Wang, C. C., “Use of new residual correction method to calculate upper and lower solutions of natural convection”, Numerical Heat Transfer Part A: Applications, vol. 51, pp. 249-265, 2007.

    Yu, L. T., Chen, C. K., “Application of the hybrid method to the transient thermal stresses response in isotropic annular fins”,. Trans. ASME, J. of applied Mechanics, Vol. 66, pp. 340-346, 1999.

    Yilbas, B. S. and Kalyon, M., “Repetitive laser pulse heating with a convective boundary condition at the surface”, Journal of Physics D:Applied Physics, vol. 34, pp. 222-231, 2001

    丁勝懋,雷射工程導論,中央圖書出版社,1998

    李宗乙,遺傳算則之雙側逼近加權殘值法在工程上之應用,博士論文,成功大學,2001.

    鄭家宜,應用殘差修正法於非線性熱傳問題之研究,碩士論文,成功大學,2008.

    蔣鎮羽,應用殘差修正法於非線性暫態熱傳問題數值解之誤差上下限估測,碩士論文,成功大學,2009.

    林聖棋,脈衝雷射於組織治療之研究,碩士論文,中央大學,2003.

    下載圖示 校內:2012-08-02公開
    校外:2012-08-02公開
    QR CODE