| 研究生: |
李雅雯 Li, Ya-Wen |
|---|---|
| 論文名稱: |
含磺酸根硫醚分子在Au(111)電極上的自組裝行為及其對電化學鍍銅的影響 Self-Assembled Behavior of a Sulfonate Thioether and Its Effect on Electrochemical Deposition of Copper on Au(111) Surface |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 自組裝單分子膜 、掃描式電子穿隧顯微鏡 、電化學鍍銅 |
| 外文關鍵詞: | Self-assembly monolayer, scanning tunneling microscopy, electrochemical copper deposition, DPS |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用循環伏安儀(cyclic voltammetry, CV)及電化學式掃描電子穿隧顯微鏡(electrochemical scanning tunneling microscopy, EC-STM)來探討3-(dimethylcarbamothioyl thio) propane-1-sulfonic acid (DPS)分子於金(111)電極表面上的吸附行為及其對於電化學鍍銅之效應。實驗結果顯示吸附在金(111)表面的DPS分子,在高電位(1.1V)時會進行氧化反應,並產生氧化態之DPS(DPSo)。若溶液中不含有DPS分子,氧化後的DPS分子在電位0.8 V會形成(√13×√31)及2種具有不同分子構型的(√13×6)之規則結構。但若溶液中含有DPS,氧化後,因大量DPSo分子的吸附,分子膜會形成聚集的分子團,無法觀察到規則的結構。此外,吸附的DPS分子膜(DPS或DPSo)會在0~0.2 V電位區間進行脫附。
在電化學鍍銅上的實驗發現,氧化後的DPS分子對銅的低電位沉積(UPD)及過電位沉積(OPD)皆有促進的效果。由STM的觀察發現,UPD銅膜會形成單層的二維島嶼型態,而OPD銅傾向於三維的成長模式。在高電位(1.25V)停留30分鐘後使溶液中的DPSo分子數量增加,其對銅沉積量及銅島狀物的高度皆有增加的趨勢。此外,本研究亦發現,在DPS氧化的程序中若有銅離子的存在,則會形成DPSo-Cu2+複合物,此一複合物可增加銅在UPD電位區間的沉積量,並改變UPD銅膜表層銅原子的排列。而在OPD電位區間,硫酸根離子會吸附於載體表面,佔據銅離子可反應的位置,使銅的沉積量下降,改變OPD的沉積型態。
Cyclic voltammetry (CV) and electrochemical scanning tunneling microscopy (EC-STM) were used to study the self-assembly behavior of 3-(dimethylcarbamothioyl thio) propane-1-sulfonic acid (DPS) on Au(111), as well as its effects on the Cu deposition. The results show that the adsorbed DPS will be oxidized to be an oxidized state (DPSo) at ca. 1.1 V. The adsorbed DPSo self-organizes into ordered structures, (√13 × √31) and (√13 × 6), at 0.8 V when the solution is free of DPS. However, when DPS molecules are contained in the solution, a larger amount of DPS will be oxidized and adsorb on the surface, leading to the formation of aggregate islands. Ordered adlayer cannot be observed in this case. Besides, the adsorbed DPS and DPSo will desorb when the potential is cathodically swept to about 0-0.2 V.
The results on the electrochemical Cu deposition reveal that the oxidized DPS can enhance the Cu deposition in both the UPD and OPD stages. Under the observation of an in-situ STM, the UPD Cu film demonstrates as monolayer islands, while the OPD Cu film exhibits a 3-dimentional morphology. When a larger amount of DPSo was formed by prolonging the oxidization time at 1.25 V, the Cu deposition will be enhanced. This study also find that, if the DPS oxidization is performed at the presence of Cu ions, a (DPSo-Cu2+) complex will form. This complex demonstrates a distinct effect to the Cu deposition. In the Cu UPD region, the complex will increase the deposition amount of Cu and, meanwhile, leads to a different arrangement of top-most Cu atoms. In the OPD stage, less Cu islands was deposited. This result is ascribed to the weaker interaction of DPSo-Cu2+ complex to the Cu substrate. Parts of the active sites were occupied by the adsorbed SO42- ions which decreases the deposition rate of Cu.
1. W.C. Bigelow, D.L. Pickett, W.A. Zisman, "Oleophobic Monolayers : I. Films Adsorbed From Solution in Non-polar Liquids", Journal of Colloid Science, 1, 513, 1946.
2. R.G. Nuzzo, D.L. Allara, "Adsorption of Bifunctional Organic Disulfides on Gold Surfaces", Journal of the American Chemical Society, 105, 4481, 1983.
3. A. Ulman, "Formation and Structure of Self-Assembled Monolayers", Journal of American Chemical Society, 96, 1533, 1996.
4. H. Sellers, A. Ulman, Y. Shnidman, J.E. Eilers, "Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers", Journal of the American Chemical Society, 115, 9389, 1993.
5. J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology", Journal of American Chemical Society, 105, 1103, 2005.
6. G.H. Yang, G.Y. Liu, "New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy", The Journal of Physical Chemistry B, 107, 8746, 2003.
7. H.A. Biebuyck, G.M. Whitesides, "Interchange between Monolayers on Gold Formed from Unsymmetrical Disulfides and Solutions of Thiols: Evidence for Sulfur-Sulfur Bond Cleavage by Gold Metal", Langmuir, 9, 1766, 1993.
8. H.A. Biebuyck, C.D. Bain, G.M. "Whitesides, Comparison of Organic Monolayers on Polycrystalline Gold Spontaneously Assembled from Solutions Containing Dialkyl Disulfides or Alkanethiols", Langmuir, 10, 1825, 1994.
9. E.B. Thoughton, C.D. Bain, G.M. Whitesides, R.G. Nuzzo, D.L. Allara, M.D. Porter, "Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical and Unsymmetrical Dialkyl Sulfides from Solution onto Gold Substrates: Structure, Properties, and Reactivity of Constituent Functional Groups", Langmuir, 4, 365, 1988.
10. C.J. Sandroff, D.R. Herschbach, "Surface-Enhanced Raman Study of Organic Sulfides Adsorbed on Silver : Facile Cleavage of S-S and C-S Bonds", Journal of Physical Chemistry, 86, 3277, 1982.
11. S.B. Lee, K. Kim, M.S. Kim, "Electrochemical Reductlon of Organlc Sulfldes Investlgated by Raman Spectroscopy", Journal of Physical Chemistry, 96, 9940, 1992.
12. C.J. Zhong, M.D. Porter, "Evidence for Carbon-Sulfur Bond Cleavage in Spontaneously Adsorbed Organosulfide-Based Monolayers at Gold", Journal of the American Chemical Society, 116, 11616, 1994.
13. M.W.J. Beulen, B.H. Huisman, P.A. vanderHeijden, F.C.J.M. vanVeggel, M.G. Simons, Ed M.E.F. Biemond, P.J. deLange, D.N. Reinhoudt, "Evidence for Nondestructive Adsorption of Dialkyl Sulfides on Gold", Langmuir, 12, 6170, 1996.
14. C.J. Zhong, R.C. Brush, J. Anderegg, M.D. Porter, "Organosulfur Monolayers at Gold Surfaces: Reexamination of the Case for Sulfide Adsorption and Implications to the Formation of Monolayers from Thiols and Disulfides", Langmuir, 15, 518, 1999.
15. H. Takiguchi, K. Sato, "Delicate Surface Reaction of Dialkyl Sulfide Self-Assembled Monolayers on Au(111)", Langmuir, 16, 1703, 2000.
16. B. Hagenhoff, A. Benninghoven, J. Spinke, M. Liley, W. Knoll, "Time-of-Flight Secondary Ion Mass Spectrometry Investigations of Self-Assembled Monolayers of Organic Thiols, Sulfides, and Disulfides on Gold Surfaces", Langmuir, 9, 1622, 1993.
17. J. Noh, H.S. Kato, M. Kawai, M. Hara, "Surface and Adsorption Structures of Dialkyl Sulfide Self-Assembled Monolayers on Au(111)", Journal of Physical Chemistry B, 106, 13268, 2002.
18. J. Noh, Y. Jeong, E. Ito, M. Hara, "Formation and Domain Structure of Self-Assembled Monolayers by Adsorption of Tetrahydrothiophene on Au(111)", Journal of Physical Chemistry C, 111, 2691, 2007.
19. Y.F. Liu, K. Krug, P.C. Lin, Y.D. Chiu, W.P. Dow, Y.L. Lee, "Scanning Tunneling Microscopy and Cyclic Voltammetry Study of Self-Assembled 3,3′-Thiobis(1-propanesulfonic acid, sodium salt) Monolayers on Au(111) Electrodes", The Journal of Physical Chemistry C, 115, 7638, 2011.
20. Y. Xia, X.M. Zhao, G.M. Whitesides, "Pattern Transfer: Self-Assembled Monolayers as Ultrathin Resists", Microelectronic Engineering, 32, 255, 1996.
21. C. Cotton, A. Glidle, G. Beamson, J.M. Cooper, "Dynamics of the Formation of Mixed Alkanethiol Monolayers: Applications in Structuring Biointerfacial Arrangements", Langmuir, 14, 5139, 1998.
22. I. Taniguchi, K. Toyosawa, H. Yamaguchi, K. Yasukouchi, "Reversible Electrochemical Reduction and Oxidation of Cytochrome c at a Bis(4-pyridyl) Disulphide-modified Gold Electrode", Journal of the Chemical Socciety, Chemical Communications, 1032, 1982.
23. J.Y. Huang, D.A. Dahlgren, J.C. Hemminger, "Photopatterning of Self-Assembled Alkanethiolate Monolayers on Gold: A Simple Monolayer Photoresist Utilizing Aqueous Chemistry", Langmuir, 10, 626, 1994.
24. X.M. Li, J. Huskens, D.N. Reinhoudt, "Reactive Self-Assembled Monolayers on Flat and Nanoparticle Surfaces, and Their Application in Soft and Scanning Probe Lithographic Nanofabrication Technologies", Journal of Materials Chemistry, 14, 2954, 2004.
25. C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, "Damascene Copper Electroplating for Chip Interconnections", IBM Journal of Research and Development, 42, 567, 1998.
26. S. Soukane, S. Sen, T.S. Caleb, "Feature Superfilling in Copper Electrochemical Deposition", Journal of The Electrochemical Society, 149, C74, 2002.
27. Z. Nagy, J.P. Blaudeau, N.C. Hung, L.A. Curtiss, D.J. Zurawski, "Chloride Ion Catalysis of the Copper Deposition Reaction", Journal of The Electrochemical Society, 142, L87, 1995.
28. W.P. Dow, H.S. Huang, M.Y. Yen, H.H. Chen, "Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition", Journal of The Electrochemical Society, 152, C77, 2005.
29. G.M. Brown, G.A. Hope, "A SERS Study of SO42-/Cl- Ion Adsorption at a Copper Electrode In Situ", Journal of Electroanalytical Chemistry, 405, 211, 1996.
30. Z.V. Feng, X. Li, A.A. Gewirth, "Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in Plating Baths: A Surface-Enhanced Raman Study", Journal of Physical Chemistry B, 107, 9415, 2003.
31. J.J. Kellyaa, A.C. West, "Leveling of 200 nm Featires by Organic Additives", Electrochemical and Solid-State Letters, 11, 561, 1999.
32. Y.B. Li, W. Wang, Y.L. Li, "Adsorption Behavior and Related Mechanism of Janus Green B during Copper Via-Filling Process", Journal of The Electrochemical Society, 156, D119, 2009.
33. N. Zukauskaite, A. Malinauskas, "Electrocatalysis by a Brightener in Copper Electrodeposition", Journal of Soviet Electrochemistry, 21, 1564, 1989.
34. J.P. Healya, D. Pletchera, M. Goodenough, "The Chemistry of the Additives in an Acid Copper Electroplating Bath: Part II. The instability 4,5-dithiaoctane-1,8-disulphonic Acid in the Bath on Open Circuit", Journal of Electroanalytical Chemistry, 338, 167, 1992.
35. E. Mattsson, J.O’M. Bockris, "Galvanostatic Studies of the Kinetics of Deposition and Dissolution in the Copper + Copper Sulphate System", Transactions of the Faraday Society, 55, 1586, 1959.
36. W.P. Dow, Y.D. Chiu, M.Y. Yen, "Microvia Filling by Cu Electroplating Over a Au Seed Layer Modified by a Disulfide", Journal of The Electrochemical Society, 156, D155, 2009.
37. Y.F. Liu, K. Krug, P.C. Lin, Y.D. Chiu, W.P. Dow, S.L. Yau, Y.L. Lee, "In Situ STM Study of Cu Electrodeposition on TBPS-Modified Au(111) Electrodes", Journal of The Electrochemical Society, 159, D84, 2012.
38. 王美齡, "尺寸安定性陽極於填孔電鍍之應用", 國立中興大學化工系碩士論文, Chapter4, 2011.
39. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, "Handbook of X-ray Photoelectron Spectroscopy", 1992.
40. T.P. Moffat, D. Wheeler, S.K. Kim, D. Josell, "Curvature Enhanced Adsorbate Coverage Mechanism for Bottom-Up Superfilling and Bump Control in Damascene Processing", Electrochimica Acta, 53, 145, 2007.
41. M. Lefebvre, G. Allardyce, M. Seita, H. Tsuchida, M. Kusaka, S. Hayashi, "Copper Electroplating Technology for Microvia Filling", Circuit World, 29, 9, 2003.
42. R. Tenno, A. Pohjoranta, "An ALE Model for Prediction and Control of the Microvia Fill Process with Two Additives", Journal of The Electrochemical Society, 155, D383, 2008.
43. W.P. Dow, M.Y. Yen, S. Z. Liao, Y. D. Chiu, H. C. "Huang, Filling Mechanism in Microvia Metallization by Copper Electroplating", Electrochimica Acta, 53, 8228, 2008.
44. D.M. Kolb, H. Gerischer, C.W. Tobias, "In Advances in Electrochemistry and Electrochemical Engineering", 11, 125, 1978.
45. N. Batina, T. Will, D.M. Kolb, "Study of the Initial Stages of Copper Deposition by In Situ Scanning Tunnelling Microscopy", Faraday Discussions, 94, 93, 1992.
46. M.A. Schneeweiss, D.M. Kolb, "The Initial Stages of Copper Deposition on Bare and Chemically Modified Gold Electrodes", Physica Status Solodi(A), 173, 51, 1999.
47. D.R. Jung, A.W. Czanderna, "Chemical and Physical Interactions at Metal/Self-Assembled Organic Monolayer Interfaces", Critical Reviews in Solid State and Materials Sciences, 19, 1, 1994.
48. D.M. Kolb, M. Petri, U. Memmert, H. Meyer, "Adsorption of Mercaptopropionic Acid onto Au(1 1 1) Part II. Effect on Copper Electrodeposition", Electrochimica Acta, 49, 183, 2003.
49. H.L. Tu, P.Y. Yen, H. Wu, S. Chen, W. Vogel, S.L. Yau, W.P. Dow, "In Situ STM of 3-Mercaptopropanesulfonate Adsorbed on Pt(111) Electrode and Its Effect on the Electrodeposition of Copper", Journal of The Electrochemical Society, 157, D206, 2010.
50. K. Sato, S. Yoshimoto, J. Inukai, K. Itaya, "Effect of Sulfuric Acid
Concentration on the Structure of Sulfate Adlayer on Au(111) Electrode",
Electrochemistry Communications, 8, 725, 2006.
51. 劉昭廷, "以表面增強紅外光譜分析含磺酸根之硫醚分子於金表面的
電化學鍍銅效應", 國立成功大學化工系碩士論文, Chapter 4, 2013.
52. N. Vasiljevic, L.T. Viyannalage, N. Dimitrov, K. Sieradzki, "High
Resolution Electrochemical STM: New Structural Results for
Underpotentially Deposited Cu on Au(111) in Acid Sulfate Solution",
Journal of Electroanalytical Chemistry, 613, 118, 2008.
53. 林品均, "含磺酸根硫醚之自組裝單分子膜在Au(111)電極上的吸附及
其對電化學鍍銅的效應", 國立成功大學化工系碩士論文, Chapter 4,
2010.
54. M. Wilma, P. Broekmann, C. Stuhlmann, K. Wandelt, "In-situ STM
Investigation of Adsorbate Structures on Cu(111) in Sulfuric Acid Electrolyte", Surface Science, 416, 121, 1998.
55. M. Arenz, P. Broekmann, M. Lennartz, E. Vogler, K. Wandelt, "In-situ
Characterization of Metal/Electrolyte Interfaces:Sulfate Adsorption on Cu(111)", Phys. Stat sol, 187, 63, 2001.