| 研究生: |
洪瑋呈 Hong, Wei-Cheng |
|---|---|
| 論文名稱: |
麥卡倫輪型移動機器人之路徑追蹤控制 Trajectory Tracking Control of the Mecanum-Wheeled Mobile Robot |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 麥卡倫輪型移動機器人 、軌跡追蹤控制 |
| 外文關鍵詞: | Mecanum-wheeled mobile robot, trajectory tracking control |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
麥卡倫輪型移動機器人具有可任意在平面上移動而不需改變其姿態及可任意旋轉的優點,不管在學術界或產業界上都有相關的研究或應用。本論文主旨在於設計與實現麥卡倫輪型移動機器人系統軌跡追蹤控制。麥卡倫輪型移動機器人為一非完整約束系統,論文中將先以Euler-Lagrange方法搭配Lagrange multiplier推導出麥卡倫輪型移動機器人之動態數學模型,針對此模型利用狀態回授線性化消除系統之非線性項,分別結合PID控制與順滑模態控制設計軌跡追蹤控制器,並利用MATLAB/Simulink模擬可能性。在實作上,本系統以數位訊號處理器做為控制核心,以C語言實現控制演算法,並利用慣性感測器、室內定位模組、即時動態定位系統回授機器人位置與姿態,用以消除光學編碼器因車輪滑動而造成的回授軌跡誤差。最後,由模擬與實驗結果驗證了所完成之系統可達到軌跡追蹤之目的。
The main objective of this thesis is to design and implement the trajectory tracking control of a Mecanum-wheeled mobile robot. The constrained Euler-Lagrange method with the Lagrange multiplier is used to derive the dynamic model of the system. In the control design, the state feedback linearization is used to eliminate the nonlinear terms of the system. Base on the obtained linear system, PID control, and sliding mode control are used to design the tracking control system. MATLAB/Simulink are used to simulate the designed control system. In experiments, the control laws are implemented through a digital signal processor. An inertial measurement unit is used as a posture sensor. The indoor GPS module and real-time kinematic system are used to eliminate the position error obtained by encoders when the wheels slip. The simulation and experimental results show that the control system accomplishes trajectory tracking with good performance.
參考文獻
[1]H. Taheri, B. Qiao, and N. Ghaeminezhad, “Kinematic Model of a Four Mecanum Wheeled Mobile Robot,” International Journal of Computer Applications, Vol 113, No. 3, pp. 6-9, Mar. 2015.
[2]Fahmizal and C. H. Kuo, “Trajectory and Heading Tracking of a Mecanum Wheeled Robot Using Fuzzy Logic Control,” Proceedings of the International Conference on Instrumentation, Control, and Automation, pp. 54-59, Aug. 2016.
[3]V. Alakshendra and S. Chiddarwar, “Adaptive Robust Control of Mecanum-wheeled Mobile Tobot With Uncertainties,” Journal of Nonlinear Dynamics, Vol. 87, pp. 2147-2169, Nov. 2017.
[4]M. T. Watson, D. T. Gladwin, T. J. Prescott, and S. O. Conran, “Design and Control of a Novel Omnidirectional Dynnamically Balancing Platform for Remote Inspection of Confined and Cluttered Environmets,” Proceedings of IEEE International Conference on Industrial Electronics for Sustainable Energy Systems, pp. 473-478, Jan. 2018.
[5]KUKA官方網站, https://www.kuka.com/
[6]翁義清,「全向移動機器人之路徑追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年七月。
[7]徐嘉明,「以視覺伺服為基礎之全向移動機器人追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年七月。
[8]顏忠逸,「即時物體追蹤之立體視覺導引全向移動機器人之研製」,國立成功大學工程科學系碩士論文,民國九十八年七月。
[9]邱萬鍾,「以全向移動機器人為致動器之二維倒單擺平衡控制」,國立成功大學工程科學系碩士論文,民國九十九年七月。
[10]韓宗衛,「以全向移動機器人為致動器之二維倒單擺平衡暨軌跡追蹤控制」,國立成功大學工程科學系碩士論文,民國一○二年七月。
[11]王翊,「以影像為基礎之拋體軌跡預測及攔接」,國立成功大學工程科學系碩士論文,民國一○四年七月。
[12]A. M. Bloch, Nonholonomic Mechanics and Control, Springer-Verlag, New York, 2003.
[13]路昌股份公司永磁式直流無刷馬達:
http://lutron1980.pixnet.net/blog/post/28425129-
[14]H. Alwi, C. Edwards, and C. P. Tan, First-Order Sliding Mode Concepts, Springer, London, 2011.
[15]Moore-Penrose inverse, Wikipedia,
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
[16]C. Bohn and D. P. Atherton, “An Analysis Package Comparing PID Anti-Windup Strategies,” IEEE Control Systems Magazine, Vol. 15, No. 2, pp. 34-40, Apr. 1995.
[17]J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, New Jersey, 1991.
[18]B. C. Kuo, Automatic Control Systems, Prentice Hall, Upper Saddle River, New Jersey, 1997.
[19]C. C. Tsai, L. B. Jiang, T. Y. Wang, and T. S. Wang, “Kinematics Control of an Omnidirectional Mobile Robot,” Proceeds of 2005 CACS Automatic Control Conference Tainan, Taiwan, pp13-18, Nov. 2005.
[20]Maxon 官方網站, http://www.maxonmotor.com.tw/
[21]TMS320F28335 Digital Signal Processor Data Manual, Texas Instruments, 2011.
[22]DRV832x 6 to 60-V Three-Phase Smart Gate Driver, Texas Instruments, 2018.
[23]CSD88599Q5DC 60-V Half-Bridge NexFET™ Power Block, Texas Instruments, 2017.
[24]MPU-9255 Register Map and Descriptions Revision 1.0, InvenSense Inc., 2014.
[25]AK8963 3-axis Electrinic Compass, Asahi Kasei Microsystems, 2013.
[26]O. Talat, Calibrating an eCompass in the Presence of Hard and Soft-iron Interference, Freescale Semiconductor Ltd., 2012.
[27] 黃彥翔,「姿態航向參考系統研發與雙足機器人之步態規劃」,國立成功大學工程科學系碩士論文,民國一○三年七月。
[28]Marvelmind robotics 官方網站, https://marvelmind.com/
[29]Navspark 官方網站, http://www.navspark.com.tw/
[30]Adafruit RFM69HCW and RFM9X LoRa Packet Radio Breakouts, Adafruit Industries, 2020.
[31]Real-time kinematic, Wikipedia,
https://en.wikipedia.org/wiki/Real-time_kinematic
[32]Radio Technical Commission for Maritime Services, Wikipedia,
https://en.wikipedia.org/wiki/Radio_Technical_Commission_for_Maritime_Services
[33]Application Note AN0030 Binary Messages Raw Measurement Data Extension Of SkyTraq Venus 8 GNSS Receiver, SkyTraq Technology, Inc., 2014.
[34]NEMA-0183, Wikipedia,
https://en.wikipedia.org/wiki/NMEA_0183
[35]內政部國土繪測中心e-GNSS即時動態定位系統網站
https://egnss.nlsc.gov.tw/HotNews.aspx
[36]Z. Hendzel and Ł. Rykała, “Modelling of Dynamics of a Wheeled Mobile Robot with Mecanum Wheels with the use of Lagrange Equations of the Second Kind,” International Journal of Applied Mechanics and Engineering, Vol 22, No. 1, pp. 81-99, Feb. 2017.
[37]陳奕隆,「單輪車系統平衡控制之設計與實現」,國立成功大學工程科學系碩士論文,民國九十九年七月。
[38]柯俊廷,「單輪車機器人之路徑追隨控制」,國立成功大學工程科學系碩士論文,民國一○二年七月。
[39]楊文皓,「單輪機器人之穩定與路徑追隨控制」,國立成功大學工程科學系碩士論文,民國一○八年七月。
校內:2025-08-31公開